cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206436 Total sum of even parts in the last section of the set of partitions of n.

This page as a plain text file.
%I A206436 #30 Apr 29 2023 16:16:59
%S A206436 0,2,0,8,2,18,10,42,28,80,70,162,148,290,300,530,562,918,1020,1570,
%T A206436 1780,2602,3022,4286,4992,6858,8110,10872,12888,16962,20178,26134,
%U A206436 31138,39728,47412,59848,71312,89072,106176,131440,156400,192164,228330,278616,330502
%N A206436 Total sum of even parts in the last section of the set of partitions of n.
%C A206436 Also total sum of even parts in the partitions of n that do not contain 1 as a part.
%C A206436 From _Omar E. Pol_, Apr 09 2023: (Start)
%C A206436 Convolution of A002865 and A146076.
%C A206436 a(n) is also the total sum of even divisors of the terms in the n-th row of the triangle A336811.
%C A206436 a(n) is also the sum of even terms in the n-th row of the triangle A207378.
%C A206436 a(n) is also the sum of even terms in the n-th row of the triangle A336812. (End)
%H A206436 Vaclav Kotesovec, <a href="/A206436/b206436.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Alois P. Heinz)
%F A206436 G.f.: (Sum_{i>0} 2*i*x^(2*i)*(1-x)/(1-x^(2*i))) / Product_{i>0} (1-x^i). - _Alois P. Heinz_, Mar 16 2012
%F A206436 a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (24*sqrt(2*n)). - _Vaclav Kotesovec_, May 29 2018
%p A206436 b:= proc(n, i) option remember; local g, h;
%p A206436       if n=0 then [1, 0]
%p A206436     elif i<1 then [0, 0]
%p A206436     else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i));
%p A206436          [g[1]+h[1], g[2]+h[2] +((i+1) mod 2)*h[1]*i]
%p A206436       fi
%p A206436     end:
%p A206436 a:= n-> b(n, n)[2] -`if`(n=1, 0, b(n-1, n-1)[2]):
%p A206436 seq(a(n), n=1..60);  # _Alois P. Heinz_, Mar 16 2012
%t A206436 b[n_, i_] := b[n, i] = Module[{g, h}, Which[n == 0, {1, 0}, i < 1, {0, 0}, True, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + Mod[i+1, 2]*h[[1]]*i}]]; a[n_] := b[n, n][[2]] - If[n == 1, 0, b[n-1, n-1][[2]]]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Feb 16 2017, after _Alois P. Heinz_ *)
%Y A206436 Partial sums give A066966.
%Y A206436 Cf. A002865, A135010, A138121, A138879, A146076, A206433, A206434, A206435, A207378, A336811, A336812.
%K A206436 nonn
%O A206436 1,2
%A A206436 _Omar E. Pol_, Feb 12 2012
%E A206436 More terms from _Alois P. Heinz_, Mar 16 2012