This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206436 #30 Apr 29 2023 16:16:59 %S A206436 0,2,0,8,2,18,10,42,28,80,70,162,148,290,300,530,562,918,1020,1570, %T A206436 1780,2602,3022,4286,4992,6858,8110,10872,12888,16962,20178,26134, %U A206436 31138,39728,47412,59848,71312,89072,106176,131440,156400,192164,228330,278616,330502 %N A206436 Total sum of even parts in the last section of the set of partitions of n. %C A206436 Also total sum of even parts in the partitions of n that do not contain 1 as a part. %C A206436 From _Omar E. Pol_, Apr 09 2023: (Start) %C A206436 Convolution of A002865 and A146076. %C A206436 a(n) is also the total sum of even divisors of the terms in the n-th row of the triangle A336811. %C A206436 a(n) is also the sum of even terms in the n-th row of the triangle A207378. %C A206436 a(n) is also the sum of even terms in the n-th row of the triangle A336812. (End) %H A206436 Vaclav Kotesovec, <a href="/A206436/b206436.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Alois P. Heinz) %F A206436 G.f.: (Sum_{i>0} 2*i*x^(2*i)*(1-x)/(1-x^(2*i))) / Product_{i>0} (1-x^i). - _Alois P. Heinz_, Mar 16 2012 %F A206436 a(n) ~ Pi * exp(Pi*sqrt(2*n/3)) / (24*sqrt(2*n)). - _Vaclav Kotesovec_, May 29 2018 %p A206436 b:= proc(n, i) option remember; local g, h; %p A206436 if n=0 then [1, 0] %p A206436 elif i<1 then [0, 0] %p A206436 else g:= b(n, i-1); h:= `if`(i>n, [0, 0], b(n-i, i)); %p A206436 [g[1]+h[1], g[2]+h[2] +((i+1) mod 2)*h[1]*i] %p A206436 fi %p A206436 end: %p A206436 a:= n-> b(n, n)[2] -`if`(n=1, 0, b(n-1, n-1)[2]): %p A206436 seq(a(n), n=1..60); # _Alois P. Heinz_, Mar 16 2012 %t A206436 b[n_, i_] := b[n, i] = Module[{g, h}, Which[n == 0, {1, 0}, i < 1, {0, 0}, True, g = b[n, i-1]; h = If[i>n, {0, 0}, b[n-i, i]]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + Mod[i+1, 2]*h[[1]]*i}]]; a[n_] := b[n, n][[2]] - If[n == 1, 0, b[n-1, n-1][[2]]]; Table[a[n], {n, 1, 60}] (* _Jean-François Alcover_, Feb 16 2017, after _Alois P. Heinz_ *) %Y A206436 Partial sums give A066966. %Y A206436 Cf. A002865, A135010, A138121, A138879, A146076, A206433, A206434, A206435, A207378, A336811, A336812. %K A206436 nonn %O A206436 1,2 %A A206436 _Omar E. Pol_, Feb 12 2012 %E A206436 More terms from _Alois P. Heinz_, Mar 16 2012