cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206441 Triangle read by rows. T(n,k) = number of distinct parts in the k-th region of the last section of the set of partitions of n.

This page as a plain text file.
%I A206441 #22 Mar 14 2015 11:42:49
%S A206441 1,2,2,1,3,1,3,1,2,1,4,1,2,1,4,1,2,1,3,1,1,5,1,2,1,3,1,2,1,5,1,2,1,3,
%T A206441 1,1,4,1,2,1,1,6
%N A206441 Triangle read by rows. T(n,k) = number of distinct parts in the k-th region of the last section of the set of partitions of n.
%C A206441 a(n) is also the number of distinct parts in the n-th region of the shell model of partitions (see A135010 and A206437).
%e A206441 The first region in the last section of the set of partitions of 6 looks like this:
%e A206441 .        **
%e A206441 There is only one part, so T(6,1) = 1.
%e A206441 The second region in the last section of the set of partitions of 6 looks like this:
%e A206441 .        ****
%e A206441 .          **
%e A206441 There are two distinct parts, so T(6,2) = 2.
%e A206441 The third region in the last section of the set of partitions of 6 looks like this:
%e A206441 .        ***
%e A206441 There is only one part, so T(6,3) = 1.
%e A206441 The 4th region in the last section of the set of partitions of 6 looks like this:
%e A206441 .        ******
%e A206441 .           ***
%e A206441 .            **
%e A206441 .            **
%e A206441 .             *
%e A206441 .             *
%e A206441 .             *
%e A206441 .             *
%e A206441 .             *
%e A206441 .             *
%e A206441 .             *
%e A206441 There are four distinct parts, so T(6,4) = 4.
%e A206441 Written as a triangle:
%e A206441 1;
%e A206441 2;
%e A206441 2;
%e A206441 1, 3;
%e A206441 1, 3;
%e A206441 1, 2, 1, 4;
%e A206441 1, 2, 1, 4;
%e A206441 1, 2, 1, 3, 1, 1, 5;
%e A206441 1, 2, 1, 3, 1, 2, 1, 5;
%e A206441 1, 2, 1, 3, 1, 1, 4, 1, 2, 1, 1, 6;
%Y A206441 Row n has length A187219(n).
%Y A206441 Cf. A135010, A138121, A141285, A186412, A193870, A194436, A194437, A194438, A194439, A194446, A194447.
%K A206441 nonn,tabf,more
%O A206441 1,2
%A A206441 _Omar E. Pol_, Feb 13 2012