cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206442 Number of distinct irreducible factors of the polynomial p(n,x) defined at A206284.

This page as a plain text file.
%I A206442 #27 Sep 09 2017 19:36:32
%S A206442 0,0,1,0,1,1,1,0,1,1,1,1,1,2,2,0,1,1,1,1,2,1,1,1,1,2,1,1,1,1,1,0,3,2,
%T A206442 2,1,1,2,2,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1,2,1,3,3,1,1,1,2,2,0,3,1,1,1,
%U A206442 3,1,1,1,1,2,2,1,2,2,1,1,1,2,1,2,2,2,2,1,1,1,2,1,4,2,3,1,1,1,2
%N A206442 Number of distinct irreducible factors of the polynomial p(n,x) defined at A206284.
%C A206442 The factorization is over the ring of polynomials having integer coefficients.
%C A206442 From _Robert Israel_, Oct 09 2016: (Start)
%C A206442 a(n) = 0 iff n is a power of 2.
%C A206442 a(n) <= A061395(n)-1 for n > 1. (End)
%H A206442 Antti Karttunen, <a href="/A206442/b206442.txt">Table of n, a(n) for n = 1..10000</a>
%e A206442 From _Antti Karttunen_, Oct 09 2016: (Start)
%e A206442 For n = 1, the corresponding polynomial is zero-polynomial, thus a(1) = 0.
%e A206442 For n = 2, the corresponding polynomial is constant 1, thus a(2) = 0.
%e A206442 For n = 3 = prime(2), the corresponding polynomial is x, thus a(3) = 1.
%e A206442 For n = 11 = prime(5), the corresponding polynomial is x^4 which factorizes as (x)(x)(x)(x), thus a(11) = 1. (Only distinct factors are counted by this sequence).
%e A206442 For n = 14 = prime(4) * prime(1), the corresponding polynomial is x^3 + 1, which factorizes as (x + 1)(x^2 - x + 1), thus a(14) = 2.
%e A206442 For n = 33 = prime(5) * prime(2), the corresponding polynomial is x^4 + x, which factorizes as x(x+1)(x^2 - x + 1), thus a(33) = 3.
%e A206442 For n = 90 = prime(3) * prime(2)^2 * prime(1), the corresponding polynomial is x^2 + 2x + 1, which factorizes as (x + 1)^2, thus a(90) = 1.
%e A206442 For n = 93 = prime(11) * prime(2), the corresponding polynomial is x^10 + x, which factorizes as x(x+1)(x^2 - x + 1)(x^6 - x^3 + 1), thus a(93) = 4.
%e A206442 For n = 177 = prime(17) * prime(2), the corresponding polynomial is x^16 + x, which factorizes as x(x + 1)(x^2 - x + 1)(x^4 - x^3 + x^2 - x + 1)(x^8 + x^7 - x^5 - x^4 - x^3 + x + 1), thus a(177) = 5.
%e A206442 (End)
%p A206442 P:= n -> add(f[2]*x^(numtheory:-pi(f[1])-1), f =  ifactors(n)[2]):
%p A206442 seq(nops(factors(P(n))[2]),n=1..200); # _Robert Israel_, Oct 09 2016
%t A206442 b[n_] := Table[x^k, {k, 0, n}];
%t A206442 f[n_] := f[n] = FactorInteger[n]; z = 1000;
%t A206442 t[n_, m_, k_] := If[PrimeQ[f[n][[m, 1]]] && f[n][[m, 1]] == Prime[k], f[n][[m, 2]], 0];
%t A206442 u = Table[Apply[Plus,
%t A206442     Table[Table[t[n, m, k], {k, 1, PrimePi[n]}], {m, 1,
%t A206442       Length[f[n]]}]], {n, 1, z}];
%t A206442 p[n_, x_] := u[[n]].b[-1 + Length[u[[n]]]]
%t A206442 TableForm[Table[{n, FactorInteger[n],
%t A206442    p[n, x], -1 + Length[FactorList[p[n, x]]]},
%t A206442 {n, 1, z/4}]]
%t A206442 Table[-1 + Length[FactorList[p[n, x]]], {n, 1, z/4}]
%t A206442 (* A206442 *)
%o A206442 (PARI)
%o A206442 A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
%o A206442 pfps(n) = if(1==n, 0, if(!(n%2), 1 + pfps(n/2), 'x*pfps(A064989(n))));
%o A206442 A206442 = n -> if(!bitand(n,(n-1)), 0, #(factor(pfps(n))~));
%o A206442 \\ Alternatively, one may use the version of pfps given by _Charles R Greathouse IV_ in A277322:
%o A206442 pfps(n)=my(f=factor(n)); sum(i=1, #f~, f[i, 2] * 'x^(primepi(f[i, 1])-1));
%o A206442 \\ In which case this version of the "main function" should suffice:
%o A206442 A206442 = n -> if(1==n, 0, #(factor(pfps(n))~));
%o A206442 \\ _Antti Karttunen_, Oct 09 2016
%Y A206442 Cf. A061395, A064989, A206284, A206285.
%Y A206442 Cf. also A277322 (gives the number of irreducible polynomial factors with multiplicity).
%K A206442 nonn
%O A206442 1,14
%A A206442 _Clark Kimberling_, Feb 07 2012
%E A206442 Example section rewritten by _Antti Karttunen_, Oct 09 2016