This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206443 #16 Oct 30 2023 11:19:21 %S A206443 13,37,145,157,181,517,565,661,2101,2197,2581,2773,8725,8917,10357, %T A206443 10453,10837,35029,35413,41173,41557,43093,43861 %N A206443 Least n such that L(n)<-1 and L(n)>L(n-1), where L(k) means the least root of the polynomial p(k,x) defined at A206284, and a(1)=13. %C A206443 A206074 gives an ordering {p(n,x)} of the polynomials with coefficients in {0,1}. %C A206443 The least n for which p(n,x) has a root r less than -1 is 13, hence the choice of 13 as the initial term of A206443. (Specifically, p(13,x)=1+x^2+x^3, and r=-1.46557...) The next p(n,x) having a root less than -1 and >r is p(37,x)=1+x^2+x^5, with least root -1.1938... %t A206443 highs := {First /@ #, Most[FoldList[Plus, 1, Length /@ #]]} &[Split[Rest[FoldList[Max, -\[Infinity], #]]]] & %t A206443 f[polyInX_] := {Min[#], Max[#]} &[ %t A206443 Map[#[[1]] &, DeleteCases[Map[{#, Head[#]} &, Chop[N[x /. Solve[polyInX == 0, x], 40]]], {_, Complex}]]] %t A206443 t = Table[IntegerDigits[n, 2], {n, 1, 100000}]; %t A206443 b[n_] := Reverse[Array[x^(# - 1) &, {n + 1}]] %t A206443 p[n_] := t[[n]].b[-1 + Length[t[[n]]]] %t A206443 Table[p[n], {n, 1, 25}] %t A206443 fitCriterion = Intersection[Map[#[[1]] &, DeleteCases[ %t A206443 Table[{n, Boole[IrreduciblePolynomialQ[p[n]]]}, {n, 1, #}], {_, 0}]], Map[#[[1]] &, DeleteCases[ %t A206443 Table[{n, CountRoots[#, {x, -Infinity, 0}] - %t A206443 CountRoots[#, {x, -1, 0}] &[p[n]]}, {n, 1, #}], %t A206443 {_, 0}]]] &[Length[t]]; %t A206443 polyNum = Map[{f[p[#]][[1]], #} &, fitCriterion]; %t A206443 up = Map[polyNum[[#]] &, highs[Map[#[[1]] &, polyNum]][[2]]] %t A206443 down = Map[polyNum[[#]] &, highs[Map[#[[1]] &, -polyNum]][[2]]] %t A206443 Table[up[[k, 2]], {k, 1, Length[up]}] (* A206443 *) %t A206443 Table[down[[k, 2]], {k, 1, Length[down]}] (* A206444 *) %t A206443 (* _Peter J. C. Moses_, Feb 06 2012 *) %Y A206443 Cf. A206074, A206284, A206444. %K A206443 nonn,more %O A206443 1,1 %A A206443 _Clark Kimberling_, Feb 07 2012