This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206451 #14 Jun 02 2025 07:39:57 %S A206451 5,25,125,625,3124,15615,78050,390125,1950000,9746876,48718765, %T A206451 243515775,1217188750,6083993750,30410221874,152002390605, %U A206451 759768437250,3797624997500,18982040993750,94879794746876,474246971343775 %N A206451 Number of 0..4 arrays of length n avoiding the consecutive pattern 0..4. %C A206451 Column 4 of A206455 %H A206451 R. H. Hardin, <a href="/A206451/b206451.txt">Table of n, a(n) for n = 1..210</a> %H A206451 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,0,0,0,-1). %F A206451 a(n) = 5*a(n-1) -a(n-5) %F A206451 Empirical: a(n) = sum{i in 0..floor(n/5)} ((-1)^i*5^(n-5*i)*binomial(n-4*i,i)) %F A206451 From _Robert Israel_, Jan 08 2016: (Start) The recursion can be proved using the matrix representation %F A206451 a(n) = [ 1 1 1 1 1] M^n [ 1 0 0 0 0 ]^T, where %F A206451 M = [ 4 3 3 3 3 ] %F A206451 [ 1 1 1 1 1 ] %F A206451 [ 0 1 0 0 0 ] %F A206451 [ 0 0 1 0 0 ] %F A206451 [ 0 0 0 1 0 ] %F A206451 which satisfies M^5 = 5 M^4 - I. %F A206451 G.f.: -x*(-5+x^4) / ( 1-5*x+x^5 ).. (End) %p A206451 M:= <<4|3|3|3|3>,<1|1|1|1|1>,<0|1|0|0|0>,<0|0|1|0|0>,<0|0|0|1|0>>: %p A206451 seq(<1|1|1|1|1> . M^n . <1,0,0,0,0>, n=1..30); # _Robert Israel_, Jan 08 2016 %K A206451 nonn %O A206451 1,1 %A A206451 _R. H. Hardin_, Feb 07 2012