This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206464 #43 Mar 09 2024 14:23:40 %S A206464 1,1,2,4,10,26,74,218,672,2126,6908,22876,77100,263514,911992,3189762, %T A206464 11261448,40083806,143713968,518594034,1882217168,6867064856, %U A206464 25172021144,92666294090,342467464612,1270183943200,4726473541216,17640820790092,66025467919972 %N A206464 Number of length-n Catalan-RGS (restricted growth strings) such that the RGS is a valid mixed-radix number in falling factorial basis. %C A206464 Catalan-RGS are strings with first digit d(0)=zero, and d(k+1) <= d(k)+1, falling factorial mixed-radix numbers have last digit <= 1, second last <= 2, etc. %C A206464 The digits of the RGS are <= floor(n/2). %C A206464 The first few terms are the same as for A089429. %C A206464 Column k=0 of A264869. - _Peter Bala_, Nov 27 2015 %C A206464 a(n) = A291680(n+1,n+1). - _Alois P. Heinz_, Aug 29 2017 %H A206464 Alois P. Heinz, <a href="/A206464/b206464.txt">Table of n, a(n) for n = 0..1000</a> %F A206464 Conjecture: a(n) = Sum_{k = 0..floor(n/4)} (-1)^k * C(floor(n/2) + 1 - k, k + 1) * a(n - 1 - k), a(0) = 1. - _Gionata Neri_, Jun 17 2018 %e A206464 The a(5)=26 strings for n=5 are (dots for zeros): %e A206464 1: [ . . . . . ] %e A206464 2: [ . . . . 1 ] %e A206464 3: [ . . . 1 . ] %e A206464 4: [ . . . 1 1 ] %e A206464 5: [ . . 1 . . ] %e A206464 6: [ . . 1 . 1 ] %e A206464 7: [ . . 1 1 . ] %e A206464 8: [ . . 1 1 1 ] %e A206464 9: [ . . 1 2 . ] %e A206464 10: [ . . 1 2 1 ] %e A206464 11: [ . 1 . . . ] %e A206464 12: [ . 1 . . 1 ] %e A206464 13: [ . 1 . 1 . ] %e A206464 14: [ . 1 . 1 1 ] %e A206464 15: [ . 1 1 . . ] %e A206464 16: [ . 1 1 . 1 ] %e A206464 17: [ . 1 1 1 . ] %e A206464 18: [ . 1 1 1 1 ] %e A206464 19: [ . 1 1 2 . ] %e A206464 20: [ . 1 1 2 1 ] %e A206464 21: [ . 1 2 . . ] %e A206464 22: [ . 1 2 . 1 ] %e A206464 23: [ . 1 2 1 . ] %e A206464 24: [ . 1 2 1 1 ] %e A206464 25: [ . 1 2 2 . ] %e A206464 26: [ . 1 2 2 1 ] %p A206464 b:= proc(i, l) option remember; %p A206464 `if`(i<=0, 1, add(b(i-1, j), j=0..min(l+1, i))) %p A206464 end: %p A206464 a:= n-> b(n-1, 0): %p A206464 seq(a(n), n=0..40); # _Alois P. Heinz_, Feb 08 2012 %t A206464 b[i_, l_] := b[i, l] = If[i <= 0, 1, Sum[b[i-1, j], {j, 0, Min[l+1, i]}]]; %t A206464 a[n_] := b[n-1, 0]; %t A206464 a /@ Range[0, 40] (* _Jean-François Alcover_, Nov 07 2020, after _Alois P. Heinz_ *) %Y A206464 Cf. A080935, A080936, A264869, A291680. %K A206464 nonn %O A206464 0,3 %A A206464 _Joerg Arndt_, Feb 08 2012