This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206474 #13 Nov 28 2013 04:14:46 %S A206474 1,1,1,0,1,1,1,1,1,1,0,2,2,1,1,1,1,3,3,1,1,0,3,3,4,4,1,1,1,1,6,6,5,5, %T A206474 1,1,0,4,4,10,10,6,6,1,1,1,1,10,10,15,15,7,7,1,1,0,5,5,20,20,21,21,8, %U A206474 8,1,1,1,1,15,15,35,35,28,28,9,9,1,1 %N A206474 Riordan array ((1+x-x^2)/(1-x^2), x/(1-x^2)). %C A206474 Triangle T(n,k), read by rows, given by (1, -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. %C A206474 Antidiagonal sums are A158780(n+1). %C A206474 Row sums are 2*Fibonacci(n) = 2*A000045(n), n>0. %F A206474 T(2n, 2k) = A128908(n,k), T(2n+1, 2k) = T(2n+1, 2k+1) = A085478(n,k) = Binomial (n+k, 2k), T(2n+2, 2k+1) = A078812(n,k) = Binomial(n+k-1, 2k-1). %F A206474 T(n,k) = T(n-1,k-1) + T(n-2,k), T(0,0) = T(0,1) = 1, T(0,2) = 0. %F A206474 G.f.: (1+x-x^2)/(1-x*y-x^2). %F A206474 Sum_{k, 0<=k<=n} T(n,k)*x^k = (-1)^n* A000129(n) (n>0), A000007(n), A135528(n-1), A055389(n) for x = -2, -1, 0, 1 respectively . %e A206474 Triangle begins : %e A206474 1 %e A206474 1, 1 %e A206474 0, 1, 1 %e A206474 1, 1, 1, 1 %e A206474 0, 2, 2, 1, 1 %e A206474 1, 1, 3, 3, 1, 1 %e A206474 0, 3, 3, 4, 4, 1, 1 %e A206474 1, 1, 6, 6, 5, 5, 1, 1 %e A206474 0, 4, 4, 10, 10, 6, 6, 1, 1 %e A206474 1, 1, 10, 10, 15, 15, 7, 7, 1, 1 %e A206474 0, 5, 5, 20, 20, 21, 21, 8, 8, 1, 1 %e A206474 1, 1, 15, 15, 35, 35, 28, 28, 9, 9, 1, 1 %t A206474 t[1, 0] = 1; t[2, 0] = 0; t[n_, n_] = 1; t[n_ /; n >= 0, k_ /; k >= 0] /; k <= n := t[n, k] = t[n-1, k-1] + t[n-2, k]; t[n_, k_] = 0; Table[t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Nov 28 2013 *) %Y A206474 Cf. A007318, A078812, A085478, A128908, %K A206474 easy,nonn,tabl %O A206474 0,12 %A A206474 _Philippe Deléham_, Feb 08 2012