cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A212628 Number of maximal independent vertex subsets in the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 2, 2, 2, 3, 3, 2, 2, 4, 4, 4, 3, 3, 3, 5, 2, 3, 5, 2, 4, 4, 5, 5, 3, 7, 5, 8, 3, 4, 6, 5, 2, 7, 4, 5, 5, 3, 3, 6, 4, 5, 5, 3, 5, 9, 8, 6, 3, 4, 8, 5, 5, 2, 9, 9, 3, 4, 6, 4, 6, 5, 7, 8, 2, 8, 8, 3, 4, 9, 6, 4, 5, 5, 5, 11, 3, 7, 8, 5, 4, 16, 6, 8, 5, 7, 5, 8, 5, 3, 10, 6, 8, 9, 9, 5, 3, 8, 5, 13, 8, 5, 6, 9, 5, 9, 3, 3, 9, 6, 10, 6, 3, 6, 5, 13, 6, 12, 5, 5, 6
Offset: 1

Views

Author

Emeric Deutsch, Jun 08 2012

Keywords

Comments

A vertex subset in a tree is said to be independent if no pair of vertices is connected by an edge. The empty set is considered to be independent. An independent vertex subset S of a tree is said to be maximal if every vertex that is not in S is joined by an edge to at least one vertex of S.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
Let A(n)=A(n,x), B(n)=B(n,x), C(n)=C(n,x) be the generating polynomial with respect to size of the maximal independent sets that contain the root, the maximal independent sets that do not contain the root, and the independent sets which are not maximal but become maximal if the root is removed, respectively. We have A(1)=x, B(1)=0, C(1)=1, A(t-th prime) = x[B(t) + C(t)], B(t-th prime) = A(t), C(t-th prime)=B(t), A(rs)=A(r)A(s)/x, B(rs)=B(r)B(s)+B(r)C(s)+B(s)C(r), C(rs)=C(r)C(s) (r,s>=2). The generating polynomial of the maximal independent vertex subsets with respect to size is P(n, x)=A(n,x)+B(n,x). Then a(n) = P(1,n). The Maple program is based on these relations.

Examples

			a(11)=4 because the rooted tree with Matula-Goebel number 11 is the path tree on 5 vertices R - A - B - C - D; the maximal independent vertex subsets are {R,C}, {A,C}, {A,D}, and {R,B,D}.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P := proc (n) local r, s, A, B, C: r := n -> op(1, factorset(n)): s := n -> n/r(n): A := proc (n) if n = 1 then x elif bigomega(n) = 1 then x*(B(pi(n))+C(pi(n))) else A(r(n))*A(s(n))/x end if end proc: B := proc (n) if n = 1 then 0 elif bigomega(n) = 1 then A(pi(n)) else sort(expand(B(r(n))*B(s(n))+B(r(n))*C(s(n))+B(s(n))*C(r(n)))) end if end proc: C := proc (n) if n = 1 then 1 elif bigomega(n) = 1 then B(pi(n)) else expand(C(r(n))*C(s(n))) end if end proc: if n = 1 then x else sort(expand(A(n)+B(n))) end if end proc: seq(subs(x = 1, P(n)), n = 1 .. 120);
    # For a more efficient calculation, the procedure P() could easily be simplified and optimized to yield A212628(n): remove "sort(expand...)" and replace x with 1 in appropriate places. - M. F. Hasler, Jan 06 2013
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    A[n_] := Which[n == 1, x, PrimeOmega[n] == 1, x*(B[PrimePi[n]] + c[PrimePi[n]]), True, A[r[n]]*A[s[n]]/x];
    B[n_] := Which[n == 1, 0, PrimeOmega[n] == 1, A[PrimePi[n]], True, B[r[n]]*B[s[n]] + B[r[n]]*c[s[n]] + B[s[n]]*c[r[n]]];
    c[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, B[PrimePi[n]], True, c[r[n]]*c[s[n]]];
    P[n_] := A[n] + B[n];
    a[n_] := CoefficientList[P[n], x] // Total;
    Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Jun 20 2024, after Maple code *)

Formula

a(n) = Sum_{k>=1} A212627(n,k).

A202853 Triangle read by rows: T(n,k) is the number of k-matchings of the rooted tree having Matula-Goebel number n (n>=1, k>=0).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 3, 1, 1, 3, 1, 3, 1, 4, 3, 1, 4, 3, 1, 4, 3, 1, 4, 2, 1, 4, 2, 1, 4, 2, 1, 5, 6, 1, 1, 4, 1, 4, 2, 1, 5, 5, 1, 1, 4, 1, 5, 5, 1, 5, 5, 1, 5, 6, 1, 1, 5, 5, 1, 1, 5, 3, 1, 6, 10, 4, 1, 5, 5, 1, 1, 6, 9, 4, 1, 5, 4, 1, 5, 5, 1, 6, 9, 3, 1, 5, 6, 1, 1, 5, 1, 6, 10, 4, 1, 5, 5, 1, 6, 9, 2
Offset: 1

Views

Author

Emeric Deutsch, Feb 14 2012

Keywords

Comments

The entries in row n are the coefficients of the matching-generating polynomial of the rooted tree having Matula-Goebel number n (see the MathWorld link).
A k-matching in a graph is a set of k edges, no two of which have a vertex in common.
The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
After activating the Maple program, the command m(n) will yield the matching-generating polynomial of the rooted tree corresponding to the Matula-Goebel number n.

Examples

			T(11,2)=3 because the rooted tree corresponding to n=11 is a path abcde on 5 vertices. We have three 2-matchings:  (ab,cd), (ab,de), and (bc,de).
Triangle starts:
  1;
  1,1;
  1,2;
  1,2;
  1,3,1;
  1,3,1;
  ...
		

References

  • C. D. Godsil, Algebraic Combinatorics, Chapman & Hall, New York, 1993.

Crossrefs

Cf. A206483 (matching number), A193404 (row sums), A347967 (end-most each row), A193403.
Cf. A202854 (palindromic rows).

Programs

  • Maple
    with(numtheory): N := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+N(pi(n)) else N(r(n))+N(s(n))-1 end if end proc: M := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then [0, 1] elif bigomega(n) = 1 then [x*M(pi(n))[2], M(pi(n))[1]+M(pi(n))[2]] else [M(r(n))[1]*M(s(n))[2]+M(r(n))[2]*M(s(n))[1], M(r(n))[2]*M(s(n))[2]] end if end proc: m := proc (n) options operator, arrow: sort(expand(M(n)[1]+M(n)[2])) end proc: for n to 35 do seq(coeff(m(n), x, j), j = 0 .. degree(m(n))) end do; # yields sequence in triangular form
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    V[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, 1 + V[PrimePi[n]], True, V[r[n]] + V[s[n]] - 1];
    M[n_] := Which[n == 1, {0, 1}, PrimeOmega[n] == 1, {x*M[PrimePi[n]][[2]], M[PrimePi[n]][[1]] + M[PrimePi[n]][[2]]}, True, {M[r[n]][[1]]* M[s[n]][[2]] + M[r[n]][[2]]*M[s[n]][[1]], M[r[n]][[2]]*M[s[n]][[2]]}];
    m[n_] := Total[M[n]];
    T[n_] := CoefficientList[m[n], x];
    Table[T[n], {n, 1, 35}] // Flatten (* Jean-François Alcover, Jun 24 2024, after Maple code *)

Formula

Define b(n) (c(n)) to be the generating polynomials of the matchings of the rooted tree with Matula-Goebel number n that contain (do not contain) the root, with respect to the size of the matching (a k-matching has size k). We have the following recurrence for the pair M(n)=[b(n),c(n)]. M(1)=[0,1]; if n=prime(t) (=the t-th prime), then M(n)=[xc(t),b(t)+c(t)]; if n=r*s (r,s,>=2), then M(n)=[b(r)c(s)+c(r)b(s), c(r)c(s)]. Then m(n)=b(n)+c(n) is the generating polynomial of the matchings of the rooted tree with respect to the size of the matchings (called the matching-generating polynomial). T(n,k) is the coefficient of x^k in the polynomial m(n). [The actual matching polynomial is obtained by the substitution x = -1/x^2, followed by multiplication by x^N(n), where N(n) is the number of vertices of the rooted tree.]

A347967 Number of maximum matchings in the rooted tree with Matula-Goebel number n.

Original entry on oeis.org

1, 1, 2, 2, 1, 1, 3, 3, 3, 3, 3, 2, 2, 2, 1, 4, 2, 1, 4, 5, 5, 1, 1, 3, 4, 1, 4, 4, 5, 3, 1, 5, 4, 5, 2, 2, 3, 3, 3, 7, 1, 2, 4, 2, 1, 4, 3, 4, 8, 8, 2, 2, 5, 1, 1, 6, 7, 3, 5, 5, 2, 4, 7, 6, 1, 1, 3, 8, 1, 6, 7, 3, 2, 2, 4, 6, 7, 1, 2, 9, 5, 3, 4, 4, 7, 2, 8
Offset: 1

Views

Author

Kevin Ryde, Sep 22 2021

Keywords

Crossrefs

Cf. A206483 (matching number), A202853 (matchings by size), A347966 (maximal matchings), A193404 (all matchings).

Programs

  • PARI
    \\ See links.

Formula

a(n) = A202853(n, A206483(n)), being the end-most term of row n of A202853.
Showing 1-3 of 3 results.