cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206487 Number of ordered trees isomorphic (as rooted trees) to the rooted tree having Matula number n.

This page as a plain text file.
%I A206487 #28 Nov 22 2022 21:57:56
%S A206487 1,1,1,1,1,2,1,1,1,2,1,3,2,2,2,1,1,3,1,3,2,2,1,4,1,4,1,3,2,6,1,1,2,2,
%T A206487 2,6,3,2,4,4,2,6,2,3,3,2,2,5,1,3,2,6,1,4,2,4,2,4,1,12,3,2,3,1,4,6,1,3,
%U A206487 2,6,3,10,2,6,3,3,2,12,2,5,1,4,1,12,2,4,4,4,4,12,4,3,2,4,2,6,1,3,3,6,4,6,1,8,6,2,3,10,2,6,6,5,6,6,2,6,6,2,2,20,1,6,4,3,1,12,1,1,4,12,1,12,2,2,4,4,2,6,2,12,4,6,4,15,4,4,3,9,2,12,6,4,3,6,2,24,3,4,2,6
%N A206487 Number of ordered trees isomorphic (as rooted trees) to the rooted tree having Matula number n.
%C A206487 The Matula-Goebel number of a rooted tree is defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
%C A206487 a(n) = the number of times n occurs in A127301. - _Antti Karttunen_, Jan 03 2013
%H A206487 E. Deutsch, <a href="http://arxiv.org/abs/1111.4288"> Rooted tree statistics from Matula numbers</a>, arXiv:1111.4288 [math.CO], 2011.
%H A206487 F. Goebel, <a href="http://dx.doi.org/10.1016/0095-8956(80)90049-0">On a 1-1-correspondence between rooted trees and natural numbers</a>, J. Combin. Theory, B 29 (1980), 141-143.
%H A206487 I. Gutman and A. Ivic, <a href="http://dx.doi.org/10.1016/0012-365X(95)00182-V">On Matula numbers</a>, Discrete Math., 150, 1996, 131-142.
%H A206487 I. Gutman and Yeong-Nan Yeh, <a href="http://www.emis.de/journals/PIMB/067/3.html">Deducing properties of trees from their Matula numbers</a>, Publ. Inst. Math., 53 (67), 1993, 17-22.
%H A206487 D. W. Matula, <a href="http://www.jstor.org/stable/2027327">A natural rooted tree enumeration by prime factorization</a>, SIAM Rev. 10 (1968) 273.
%H A206487 P. Schultz, <a href="https://doi.org/10.1016/0012-365X(82)90207-2">Enumeration of rooted trees with an application to group presentations</a>, Discrete Math., 41, 1982, 199-214.
%H A206487 <a href="/index/Mat#matula">Index entries for sequences related to Matula-Goebel numbers</a>
%F A206487 a(1)=1; denoting by p(t) the t-th prime, if n = p(n_1)^{k_1}...p(n_r)^{k_r}, then a(n) = a(n_1)^{k_1}...a(n_r)^{k_r}*(k_1 + ... + k_r)!/[(k_1)!...(k_r)!] (see Theorem 1 in the Schultz reference, where the exponents k_j of N(n_j) have been inadvertently omitted).
%e A206487 a(4)=1 because the rooted tree with Matula number 4 is V and there is no other ordered tree isomorphic to V. a(6)=2 because the rooted tree corresponding to n = 6 is obtained by joining the trees A - B and C - D - E at their roots A and C. Interchanging their order, we obtain another ordered tree, isomorphic (as rooted tree) to the first one.
%p A206487 with(numtheory): F := proc (n) options operator, arrow: factorset(n) end proc: PD := proc (n) local k, m, j: for k to nops(F(n)) do m[k] := 0: for j while is(n/F(n)[k]^j, integer) = true do m[k] := m[k]+1 end do end do: [seq([F(n)[q], m[q]], q = 1 .. nops(F(n)))] end proc: a := proc (n) if n = 1 then 1 elif bigomega(n) = 1 then a(pi(n)) else mul(a(PD(n)[j][1])^PD(n)[j][2], j = 1 .. nops(F(n)))*factorial(add(PD(n)[k][2], k = 1 .. nops(F(n))))/mul(factorial(PD(n)[k][2]), k = 1 .. nops(F(n))) end if end proc: seq(a(n), n = 1 .. 160);
%t A206487 primeMS[n_]:=If[n===1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]
%t A206487 MGTree[n_Integer]:=If[n===1,{},MGTree/@primeMS[n]]
%t A206487 treeperms[t_]:=Times@@Cases[t,b:{__}:>Length[Permutations[b]],{0,Infinity}];
%t A206487 Table[treeperms[MGTree[n]],{n,100}] (* _Gus Wiseman_, Nov 21 2022 *)
%Y A206487 Cf. A127301.
%Y A206487 Positions of 1's are 1 and A214577.
%Y A206487 Positions of first appearances are A358507, unsorted A358508.
%Y A206487 A000108 counts ordered rooted trees, unordered A000081.
%Y A206487 A061775 and A196050 count nodes and edges in Matula-Goebel trees.
%Y A206487 Cf. A001263, A003238, A014486, A358506.
%K A206487 nonn
%O A206487 1,6
%A A206487 _Emeric Deutsch_, Apr 14 2012