A206490 The eccentric connectivity index of the rooted tree with Matula-Goebel number n.
0, 2, 6, 6, 14, 14, 9, 9, 24, 24, 24, 19, 19, 19, 38, 12, 19, 29, 12, 31, 31, 38, 29, 24, 54, 29, 36, 24, 31, 45, 38, 15, 54, 31, 47, 34, 24, 24, 45, 38, 29, 36, 24, 47, 54, 36, 45, 29, 38, 61, 47, 36, 15, 41, 74, 29, 38, 45, 31, 52, 34, 54, 43, 18, 63, 63, 24, 38, 54, 54, 38, 39, 36, 34, 70, 29, 65, 52
Offset: 1
Keywords
Examples
a(7)=9 because the rooted tree with Matula-Goebel number 7 is Y; the 3 pendant vertices have degree 1 and eccentricity 2 and the 4th vertex has degree 3 and eccentricity 1; 1*2 + 1*2 + 1*2 + 3*1 = 9.
References
- F. Goebel, On a 1-1 correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Y-N. Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
- V. Sharma, R. Goswami, and A. K. Madan, Eccentric Connectivity index: a novel highly discriminating topological descriptor for structure-property and structure-activity studies, J. Chem. Inf. Comput. Sci., 37, 1997, 273-282.
Links
- E. Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Maple
with(numtheory): with(LinearAlgebra): V := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+V(pi(n)) else V(r(n))+V(s(n))-1 end if end proc: d := proc (n) local r, s, dt, drs: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: dt := proc (i, j) if i = 1 and j = 1 then 0 elif i = 1 and 1 < j then 1+dd[pi(n)][1, j-1] elif 1 < i and j = 1 then 1+dd[pi(n)][i-1, 1] elif 1 < i and 1 < j then dd[pi(n)][i-1, j-1] else end if end proc: drs := proc (i, j) if 1 <= i and 1 <= j and i <= V(r(n)) and j <= V(r(n)) then dd[r(n)][i, j] elif 1+V(r(n)) <= i and 1+V(r(n)) <= j and i <= V(n) and j <= V(n) then dd[s(n)][i-V(r(n))+1, j-V(r(n))+1] elif 1 <= i and i <= V(r(n)) and 1+V(r(n)) <= j and j <= n then dd[r(n)][i, 1]+dd[s(n)][1, j-V(r(n))+1] else dd[r(n)][1, j]+dd[s(n)][i-V(r(n))+1, 1] end if end proc: if n = 1 then Matrix(1, 1, [0]) elif bigomega(n) = 1 then Matrix(V(n), V(n), dt) else Matrix(V(n), V(n), drs) end if end proc: for n to 1000 do dd[n] := d(n) end do: > a := proc (n) local ddd, aa: ddd := proc (n) options operator, arrow: d(n) end proc: aa := proc (i, j) if ddd(n)[i, j] = 1 then 1 else 0 end if end proc: Matrix(RowDimension(ddd(n)), RowDimension(ddd(n)), aa) end proc: > RS := proc (m) local dim: dim := RowDimension(m): Matrix(1, dim, [seq(add(m[i, j], j = 1 .. dim), i = 1 .. dim)]) end proc: > MX := proc (m) local dim: dim := RowDimension(m): Matrix(1, dim, [seq(max(seq(m[i, j], j = 1 .. dim)), i = 1 .. dim)]) end proc: > ECI := proc (n) options operator, arrow: MatrixMatrixMultiply(RS(a(n)), Transpose(MX(d(n))))[1, 1] end proc: seq(ECI(n), n = 1 .. 77);
Formula
Explanation of the Maple program: "V" finds recursively the number of vertices (needed later); "d" finds recursively the distance matrix; "a" finds the adjacency matrix from the distance matrix; "RS" finds the vector of the row sums of any matrix (will be applied to the adjacency matrix to yield the vertex degrees); "MX" finds the vector of the largest row entries of any matrix (will be applied to the distance matrix to yield the vertex eccentricities); "ECI" finds the eccentric connectivity index by taking the dot product of the two vectors just mentioned.
Comments