A206493 Product, over all vertices v of the rooted tree with Matula-Goebel number n, of the number of vertices in the subtree with root v.
1, 2, 6, 3, 24, 8, 12, 4, 20, 30, 120, 10, 40, 15, 72, 5, 60, 24, 20, 36, 36, 144, 120, 12, 252, 48, 56, 18, 180, 84, 720, 6, 336, 72, 126, 28, 60, 24, 112, 42, 240, 42, 90, 168, 192, 140, 504, 14, 63, 288, 168, 56, 30, 64, 1152, 21, 56, 210, 360, 96, 168, 840, 96, 7, 384
Offset: 1
Keywords
Examples
a(7)=12 because the rooted tree with Matula-Goebel number 7 is Y; denoting the vertices in preorder by a,b,c, and d, the number of vertices of the subtrees having these roots are 4, 3, 1, and 1, respectively. a(11)=120 because the rooted tree with Matula-Goebel number 11 is the path tree on 5 vertices; the subtrees have 5,4,3,2,1 vertices.
Links
- Ch. Brouder, Runge-Kutta methods and renormalization, arXiv:hep-th/9904014, 1999; Eur. Phys. J. C 12, 2000, 521-534.
- Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- J. Fulman, Mixing time for a random walk on rooted trees, The Electronic J. of Combinatorics, 16, 2009, R139.
- F. Goebel, On a 1-1-correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Yeong-Nan Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Rev. 10 (1968) 273.
- Kevin Ryde, PARI/GP Code
- Index entries for sequences related to Matula-Goebel numbers
Crossrefs
Cf. A196068 (sum of subtree sizes).
Programs
-
Maple
with(numtheory): V := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+V(pi(n)) else V(r(n))+V(s(n))-1 end if end proc: H := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then V(n)*H(pi(n)) else H(r(n))*H(s(n))*V(n)/(V(r(n))*V(s(n))) end if end proc: seq(H(n), n = 1 .. 100);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; V[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, 1 + V[PrimePi[n]], True, V[r[n]] + V[s[n]] - 1]; H[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, V[n]*H[PrimePi[n]], True, H[r[n]]*H[s[n]]*V[n]/(V[r[n]]*V[s[n]])]; Table[H[n], {n, 1, 100}] (* Jean-François Alcover, Jun 24 2024, after Maple code *)
-
PARI
\\ See links.
Formula
Denote by V(k) the number of vertices of the rooted tree with Matula-Goebel number k. If n is the m-th prime, then a(n) = a(m)*V(n); if n=rs, r,s>=2, then a(n) = a(r)a(s)V(n)/{V(r)V(s)}. The Maple program is based on these recurrence relations.
Comments