A206496 The Connes-Moscovici weight of the rooted tree with Matula-Goebel number n. It is defined as the number of ways to build up the rooted tree from the one-vertex tree by adding successively edges to the existing vertices.
1, 1, 1, 1, 1, 3, 1, 1, 3, 4, 1, 6, 3, 4, 10, 1, 1, 15, 1, 10, 10, 5, 3, 10, 10, 15, 15, 10, 4, 60, 1, 1, 15, 5, 20, 45, 6, 5, 45, 20, 3, 60, 4, 15, 105, 18, 10, 15, 10, 70, 15, 45, 1, 105, 35, 20, 15, 24, 1, 210, 15, 6, 105, 1, 105, 105, 1, 15, 63, 140
Offset: 1
Keywords
Examples
a(6)=3 because the rooted tree with Matula-Goebel number 6 is the path ARBC with root at R; starting with R we can obtain the tree ARBC by adding successively edges at the vertices (i) R, R, A, or at (ii) R, R, B, or at (iii) R, A, R. a(8)=1 because the rooted tree with Matula-Goebel number 8 is the star tree with 3 edges emanating from the root; obviously, there is only 1 way to build up this tree from the root.
References
- J. C. Butcher, The Numerical Analysis of Ordinary Differential Equations, 1987, Wiley, Chichester.
Links
- Ch. Brouder, Runge-Kutta methods and renormalization, Eur. Phys. J. C 12, 2000, 521-534.
- D. J. Broadhurst and D. Kreimer, Renormalization automated by Hopf algebra, J. Symbolic Computation, 27, 1999, 581-600.
- Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- J. Fulman, Mixing time for a random walk on rooted trees, The Electronic J. of Combinatorics, 16, 2009, R139.
- F. Goebel, On a 1-1 correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Y.-N. Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Maple
with(numtheory): V := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then 1+V(pi(n)) else V(r(n))+V(s(n))-1 end if end proc: TF := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow; n/r(n) end proc: if n = 1 then 1 elif bigomega(n) = 1 then V(n)*TF(pi(n)) else TF(r(n))*TF(s(n))*V(n)/(V(r(n))*V(s(n))) end if end proc: SF := proc (n) if n = 1 then 1 elif nops(factorset(n)) = 1 then factorial(log[factorset(n)[1]](n))*SF(pi(factorset(n)[1]))^log[factorset(n)[1]](n) else SF(expand(op(1, ifactor(n))))*SF(expand(n/op(1, ifactor(n)))) end if end proc: a := proc (n) options operator, arrow: factorial(V(n))/(TF(n)*SF(n)) end proc: seq(a(n), n = 1 .. 120);
-
Mathematica
V[n_] := Module[{u, v}, u = FactorInteger[#][[1, 1]]&; v = #/u[#]&; If[n == 1, 1, If[PrimeQ[n], 1 + V[PrimePi[n]], V[u[n]] + V[v[n]] - 1]]]; r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; v[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, 1 + v[PrimePi[n]], True, v[r[n]] + v[s[n]] - 1]; TF[n_] := Which[n == 1, 1, PrimeOmega[n] == 1, V[n]*TF[PrimePi[n]], True, TF[r[n]]*TF[s[n]]*v[n]/(v[r[n]]*v[s[n]])]; SF[n_] := SF[n] = If[n == 1, 1, If[PrimeQ[n], SF[PrimePi[n]], Module[{p, e}, Product[{p, e} = pe; e! * SF[p]^e, {pe, FactorInteger[n]}]]]]; a[n_] := V[n]!/(TF[n]*SF[n]); Table[a[n], {n, 1, 120}] (* Jean-François Alcover, Jun 24 2024, after Emeric Deutsch in A061775, A206493 and A206497 *)
Comments