cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206499 The sum of the distances between all unordered pairs of branch vertices in the rooted tree with Matula-Goebel number n. A branch vertex is a vertex of degree >=3.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 4, 0, 0, 1
Offset: 1

Views

Author

Emeric Deutsch, May 22 2012

Keywords

Comments

The Matula-Goebel number of a rooted tree can be defined in the following recursive manner: to the one-vertex tree there corresponds the number 1; to a tree T with root degree 1 there corresponds the t-th prime number, where t is the Matula-Goebel number of the tree obtained from T by deleting the edge emanating from the root; to a tree T with root degree m>=2 there corresponds the product of the Matula-Goebel numbers of the m branches of T.
The A. Ilic and M. Ilic reference considers the statistic: the sum of the distances between all unordered pairs of vertices of degree k (see A212618, A212619).

Examples

			a(28)=1 because the rooted tree with Matula-Goebel number 28 is the rooted tree obtained by joining the trees I, I, and Y at their roots; it has 2 branch vertices and the distance between them is 1. a(49)=2 because the rooted tree with Matula-Goebel number 49 is the rooted tree obtained by joining two copies of Y at their roots; it has 2 branch vertices and the distance between them is 2.
		

References

  • F. Goebel, On a 1-1 correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
  • I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
  • I. Gutman and Y-N. Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
  • D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.

Crossrefs

Programs

  • Maple
    with(numtheory): g := proc (n) local r, s: r := proc(n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 and bigomega(pi(n)) <> 2 then sort(expand(x*g(pi(n)))) elif bigomega(n) = 1 and bigomega(pi(n)) = 2 then sort(expand(x+x*g(pi(n)))) elif bigomega(r(n))+bigomega(s(n)) = 2 then sort(expand(g(r(n))-subs(x = 0, g(r(n)))+g(s(n))-subs(x = 0, g(s(n))))) else sort(expand(g(r(n))-subs(x = 0, g(r(n)))+g(s(n))-subs(x = 0, g(s(n)))+1)) end if end proc: a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 and bigomega(pi(n)) <> 2 then a(pi(n)) elif bigomega(n) = 1 and bigomega(pi(n)) = 2 then a(pi(n))+subs(x = 1, diff(g(pi(n)), x)) elif bigomega(s(n)) = 2 then a(r(n))+a(s(n))+subs(x = 1, diff((1+g(r(n)))*(1+g(s(n))), x)) else a(r(n))+a(s(n))+subs(x = 1, diff(g(r(n))*g(s(n)), x)) end if end proc: seq(a(n), n = 1 .. 120);
  • Mathematica
    r[n_] := FactorInteger[n][[1, 1]];
    s[n_] := n/r[n];
    g[n_] := Which[n == 1, 0, PrimeOmega[n] == 1 && PrimeOmega[PrimePi[n]] != 2, x*g[PrimePi[n]], PrimeOmega[n] == 1 && PrimeOmega[PrimePi[n]] == 2, x + x*g[PrimePi[n]], PrimeOmega[r[n]] + PrimeOmega[s[n]] == 2, g[r[n]] - (g[r[n]] /. x -> 0) + g[s[n]] - (g[s[n]] /. x -> 0), True, g[r[n]] - ( g[r[n]] /. x -> 0) + g[s[n]] - (g[s[n]] /. x -> 0) + 1];
    a[n_] := Which[n == 1, 0, PrimeOmega[n] == 1 && PrimeOmega[PrimePi[n]] != 2, a[PrimePi[n]], PrimeOmega[n] == 1 && PrimeOmega[PrimePi[n]] == 2, a[PrimePi[n]] + (D[g[PrimePi[n]], x] /. x -> 1), PrimeOmega[s[n]] == 2, a[r[n]] + a[s[n]] + (D[(1 + g[r[n]])*(1 + g[s[n]]), x] /. x -> 1), True, a[r[n]] + a[s[n]] + (D[g[r[n]]*g[s[n]], x] /. x -> 1)];
    Table[a[n], {n, 1, 101}] (* Jean-François Alcover, Jun 24 2024, after Maple code *)

Formula

Let bigomega(n) denote the number of prime divisors of n, counted with multiplicities. Let g(n)=g(n,x) be the generating polynomial of the branch vertices of the rooted tree with Matula-Goebel number n with respect to level. We have a(1) = 0; if n = prime(t) and bigomega(t) is not 2, then a(n) = a(t); if n = prime(t) and bigomega(t) = 2, then a(n) = a(t) + [dg(t)/dx]{x=1}; if n = r*s with r prime, bigomega(s) != 2, then a(n) = a(r) + a(s) + [d[g(r)g(s)]/dx]{x=1}; if n=r*s with r prime, bigomega(s)=2, then a(n)=a(r)+a(s)+ [d[g(r)g(s)]/dx]{x=1} + [dg(r)/dx]{x=1} + [dg(s)/dx]_{x=1}.