A206499 The sum of the distances between all unordered pairs of branch vertices in the rooted tree with Matula-Goebel number n. A branch vertex is a vertex of degree >=3.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 4, 0, 0, 1
Offset: 1
Keywords
Examples
a(28)=1 because the rooted tree with Matula-Goebel number 28 is the rooted tree obtained by joining the trees I, I, and Y at their roots; it has 2 branch vertices and the distance between them is 1. a(49)=2 because the rooted tree with Matula-Goebel number 49 is the rooted tree obtained by joining two copies of Y at their roots; it has 2 branch vertices and the distance between them is 2.
References
- F. Goebel, On a 1-1 correspondence between rooted trees and natural numbers, J. Combin. Theory, B 29 (1980), 141-143.
- I. Gutman and A. Ivic, On Matula numbers, Discrete Math., 150, 1996, 131-142.
- I. Gutman and Y-N. Yeh, Deducing properties of trees from their Matula numbers, Publ. Inst. Math., 53 (67), 1993, 17-22.
- D. W. Matula, A natural rooted tree enumeration by prime factorization, SIAM Review, 10, 1968, 273.
Links
- Emeric Deutsch, Rooted tree statistics from Matula numbers, arXiv:1111.4288 [math.CO], 2011.
- A. Ilic and M. Ilic, Generalizations of Wiener polarity index and terminal Wiener index, arXiv:11106.2986.
- Index entries for sequences related to Matula-Goebel numbers
Programs
-
Maple
with(numtheory): g := proc (n) local r, s: r := proc(n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 and bigomega(pi(n)) <> 2 then sort(expand(x*g(pi(n)))) elif bigomega(n) = 1 and bigomega(pi(n)) = 2 then sort(expand(x+x*g(pi(n)))) elif bigomega(r(n))+bigomega(s(n)) = 2 then sort(expand(g(r(n))-subs(x = 0, g(r(n)))+g(s(n))-subs(x = 0, g(s(n))))) else sort(expand(g(r(n))-subs(x = 0, g(r(n)))+g(s(n))-subs(x = 0, g(s(n)))+1)) end if end proc: a := proc (n) local r, s: r := proc (n) options operator, arrow: op(1, factorset(n)) end proc: s := proc (n) options operator, arrow: n/r(n) end proc: if n = 1 then 0 elif bigomega(n) = 1 and bigomega(pi(n)) <> 2 then a(pi(n)) elif bigomega(n) = 1 and bigomega(pi(n)) = 2 then a(pi(n))+subs(x = 1, diff(g(pi(n)), x)) elif bigomega(s(n)) = 2 then a(r(n))+a(s(n))+subs(x = 1, diff((1+g(r(n)))*(1+g(s(n))), x)) else a(r(n))+a(s(n))+subs(x = 1, diff(g(r(n))*g(s(n)), x)) end if end proc: seq(a(n), n = 1 .. 120);
-
Mathematica
r[n_] := FactorInteger[n][[1, 1]]; s[n_] := n/r[n]; g[n_] := Which[n == 1, 0, PrimeOmega[n] == 1 && PrimeOmega[PrimePi[n]] != 2, x*g[PrimePi[n]], PrimeOmega[n] == 1 && PrimeOmega[PrimePi[n]] == 2, x + x*g[PrimePi[n]], PrimeOmega[r[n]] + PrimeOmega[s[n]] == 2, g[r[n]] - (g[r[n]] /. x -> 0) + g[s[n]] - (g[s[n]] /. x -> 0), True, g[r[n]] - ( g[r[n]] /. x -> 0) + g[s[n]] - (g[s[n]] /. x -> 0) + 1]; a[n_] := Which[n == 1, 0, PrimeOmega[n] == 1 && PrimeOmega[PrimePi[n]] != 2, a[PrimePi[n]], PrimeOmega[n] == 1 && PrimeOmega[PrimePi[n]] == 2, a[PrimePi[n]] + (D[g[PrimePi[n]], x] /. x -> 1), PrimeOmega[s[n]] == 2, a[r[n]] + a[s[n]] + (D[(1 + g[r[n]])*(1 + g[s[n]]), x] /. x -> 1), True, a[r[n]] + a[s[n]] + (D[g[r[n]]*g[s[n]], x] /. x -> 1)]; Table[a[n], {n, 1, 101}] (* Jean-François Alcover, Jun 24 2024, after Maple code *)
Formula
Let bigomega(n) denote the number of prime divisors of n, counted with multiplicities. Let g(n)=g(n,x) be the generating polynomial of the branch vertices of the rooted tree with Matula-Goebel number n with respect to level. We have a(1) = 0; if n = prime(t) and bigomega(t) is not 2, then a(n) = a(t); if n = prime(t) and bigomega(t) = 2, then a(n) = a(t) + [dg(t)/dx]{x=1}; if n = r*s with r prime, bigomega(s) != 2, then a(n) = a(r) + a(s) + [d[g(r)g(s)]/dx]{x=1}; if n=r*s with r prime, bigomega(s)=2, then a(n)=a(r)+a(s)+ [d[g(r)g(s)]/dx]{x=1} + [dg(r)/dx]{x=1} + [dg(s)/dx]_{x=1}.
Comments