This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206530 #15 Dec 20 2022 11:23:28 %S A206530 6,3,0,7,9,9,3,5,1,6,4,4,3,7,4,0,0,2,7,5,1,3,5,2,1,7,3,9,8,2,4,1,6,0, %T A206530 1,2,8,9,7,1,3,4,2,0,4,7,2,5,7,6,3,9,3,0,2,2,5,2,4,0,1,0,1,5,3,4,9,7, %U A206530 9,9,3,2,6,2,4,1,2,3,5,5,6,9,1,9,2,8,6,2,1,4,8,3,8,3,9,0,7,0,0,9,1,3,9 %N A206530 Decimal expansion of 1/(1-sin(1)). %C A206530 The value of the limit of (A206307+6*A206308) / (A206308). %D A206530 E. W. Cheney, Introduction to Approximation Theory, McGraw-Hill, Inc., 1966. %H A206530 G. C. Greubel, <a href="/A206530/b206530.txt">Table of n, a(n) for n = 1..5000</a> %F A206530 Equals 1/(1-A049469). %F A206530 A206307/A206308 + 6 -> 1/(1-A049469). %F A206530 Abs(A206308/(1-sin(1)) - (A206307 + 6*A206308)) -> 0. %e A206530 6.3079935164437400275135217398... %t A206530 RealDigits[N[1/(1-Sin[1]), 150]][[1]] %o A206530 (Magma) SetDefaultRealField(RealField(150)); 1/(1-Sin(1)); // _G. C. Greubel_, Dec 20 2022 %o A206530 (SageMath) numerical_approx(1/(1-sin(1)), digits=150) # _G. C. Greubel_, Dec 20 2022 %Y A206530 Cf. A002943, A049469, A125202, A206307, A206308. %K A206530 nonn,cons %O A206530 1,1 %A A206530 _Seiichi Kirikami_, Feb 11 2012