cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206551 Moduli n for which the multiplicative group Modd n is cyclic.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 21, 22, 23, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 45, 46, 47, 49, 50, 51, 53, 54, 55, 57, 58, 59, 61, 62, 64, 67, 69, 71, 73, 74, 75, 77, 79, 81, 82, 83, 86, 87, 89, 93, 94, 95, 97, 98, 99
Offset: 1

Views

Author

Wolfdieter Lang, Mar 27 2012

Keywords

Comments

For Modd n (not to be confused with mod n) see a comment on A203571.
For n=1 one has the Modd 1 residue class [0], the integers. The group of order 1 is the cyclic group Z_1 with the unit element 0==1 (Modd 1). [Changed by Wolfdieter Lang, Apr 04 2012]
For the non-cyclic (acyclic) values see A206552.
For these numbers n, and only for these (only the n values < 100 are shown above), there exist primitive roots Modd n. See the nonzero values of A206550 for the smallest positive ones.
For n=1 the primitive root is 0 == 1 (Modd 1), see above.
For n>=1 the multiplicative group Modd n is the Galois group Gal(Q(rho(n))/Q), with the algebraic number rho(n) := 2*cos(Pi/n) with minimal polynomial C(n,x), whose coefficients are given in A187360.

Examples

			a(2) = 2 for the multiplicative group Modd 2, with representative [1], and there is a primitive root, namely 1, because 1^1 = 1 == 1 (Modd 1). The cycle structure is [[1]], the group is Z_1.
a(3) = 3 for the multiplicative group Modd 3 which coincides with the one for Modd 2.
a(4) = 4 for the multiplicative group Modd 4 with representatives [1,3]. The smallest positive  primitive root is 3, because 3^2 == 1 (Modd 4). This group is cyclic, it is Z_2.
		

Crossrefs

Cf. A206550, A033948 (mod n case).

Formula

A206550(a(n)) > 0, n>=1.