This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206561 #45 Mar 21 2018 17:14:04 %S A206561 1,4,2,9,5,3,20,13,7,4,35,23,15,9,5,66,47,31,19,11,6,105,75,53,35,23, %T A206561 13,7,176,131,93,66,42,27,15,8,270,203,151,106,74,49,31,17,9,420,323, %U A206561 241,178,126,86,56,35,19,10,616,477,365,272,200,140,98,63,39,21,11 %N A206561 Triangle read by rows: T(n,k) = total sum of parts >= k in all partitions of n. %C A206561 From _Omar E. Pol_, Mar 18 2018: (Start) %C A206561 In the n-th row of the triangle the first differences together with its last term give the n-th row of triangle A138785 (see below): %C A206561 Row..........: 1 2 3 4 5 ... %C A206561 --- ---- ------- ------------ ---------------- %C A206561 This triangle: 1; 4, 2; 9, 5, 3; 20, 13, 7, 4; 35, 23, 15, 9, 5; ... %C A206561 | | /| | /| /| | / | /| /| | / | / | /| /| %C A206561 | |/ | |/ |/ | |/ |/ |/ | |/ |/ |/ |/ | %C A206561 A138785......: 1; 2, 2; 4, 2, 3; 7, 6, 3, 4; 12, 8, 6, 4, 5; ... (End) %H A206561 Alois P. Heinz, <a href="/A206561/b206561.txt">Rows n = 1..141, flattened</a> %F A206561 T(n,n) = n, T(n,k) = T(n,k+1) + k * A066633(n,k) for k < n. %F A206561 T(n,k) = Sum_{i=k..n} A138785(n,i). %e A206561 Triangle begins: %e A206561 1; %e A206561 4, 2; %e A206561 9, 5, 3; %e A206561 20, 13, 7, 4; %e A206561 35, 23, 15, 9, 5; %e A206561 66, 47, 31, 19, 11, 6; %e A206561 105, 75, 53, 35, 23, 13, 7; %e A206561 ... %t A206561 Table[With[{s = IntegerPartitions[n]}, Table[Total@ Flatten@ Map[Select[#, # >= k &] &, s], {k, n}]], {n, 11}] // Flatten (* _Michael De Vlieger_, Mar 19 2018 *) %Y A206561 Columns 1-2 give A066186, A194552. %Y A206561 Right border gives A000027. %Y A206561 Cf. A138785, A181187. %Y A206561 Row sums give A066183. - _Omar E. Pol_, Mar 19 2018 %Y A206561 Both A180681 and A299768 have the same row sums as this triangle. - _Omar E. Pol_, Mar 21 2018 %K A206561 nonn,tabl %O A206561 1,2 %A A206561 _Omar E. Pol_, Feb 14 2012 %E A206561 More terms from _Alois P. Heinz_, Feb 14 2012