This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206563 #98 Feb 23 2020 09:38:52 %S A206563 1,2,1,5,1,1,8,4,1,1,15,5,3,1,1,24,11,5,3,1,1,39,15,9,4,3,1,1,58,28, %T A206563 13,9,4,3,1,1,90,38,23,12,8,4,3,1,1,130,62,33,21,12,8,4,3,1,1,190,85, %U A206563 51,29,20,11,8,4,3,1,1,268,131,73,48,28,20,11,8,4,3,1,1 %N A206563 Triangle read by rows: T(n,k) = number of odd/even parts >= k in all partitions of n, if k is odd/even. %C A206563 Let m and n be two positive integers such that m <= n. It appears that any set formed by m connected sections, or m disconnected sections, or a mixture of both, has the same properties described in the section example. (Cf. A135010, A207031, A207032, A212010). - _Omar E. Pol_, May 01 2012 %F A206563 It appears that T(n,k) = abs(Sum_{j=k..n} (-1)^j*A181187(n,j)). %F A206563 It appears that A066633(n,k) = T(n,k) - T(n,k+2). - Omar E. Pol, Feb 26 2012 %e A206563 Calculation for n = 6. Write the partitions of 6 and below the sums of their columns: %e A206563 . %e A206563 . 6 %e A206563 . 3 + 3 %e A206563 . 4 + 2 %e A206563 . 2 + 2 + 2 %e A206563 . 5 + 1 %e A206563 . 3 + 2 + 1 %e A206563 . 4 + 1 + 1 %e A206563 . 2 + 2 + 1 + 1 %e A206563 . 3 + 1 + 1 + 1 %e A206563 . 2 + 1 + 1 + 1 + 1 %e A206563 . 1 + 1 + 1 + 1 + 1 + 1 %e A206563 . ------------------------ %e A206563 . 35, 16, 8, 4, 2, 1 --> Row 6 of triangle A181187. %e A206563 . | /| /| /| /| /| %e A206563 . | / | / | / | / | / | %e A206563 . |/ |/ |/ |/ |/ | %e A206563 . 19, 8, 4, 2, 1, 1 --> Row 6 of triangle A066633. %e A206563 . %e A206563 More generally, it appears that the sum of column k is also the total number of parts >= k in all partitions of n. It appears that the first differences of the column sums together with 1 give the number of occurrences of k in all partitions of n. %e A206563 On the other hand we can see that the partitions of 6 contain: %e A206563 24 odd parts >= 1 (the odd parts). %e A206563 11 even parts >= 2 (the even parts). %e A206563 5 odd parts >= 3. %e A206563 3 even parts >= 4. %e A206563 2 odd parts >= 5. %e A206563 1 even part >= 6. %e A206563 Then, using the values of the column sums, it appears that: %e A206563 T(6,1) = 35 - 16 + 8 - 4 + 2 - 1 = 24 %e A206563 T(6,2) = 16 - 8 + 4 - 2 + 1 = 11 %e A206563 T(6,3) = 8 - 4 + 2 - 1 = 5 %e A206563 T(6,4) = 4 - 2 + 1 = 3 %e A206563 T(6,5) = 2 - 1 = 1 %e A206563 T(6,6) = 1 = 1 %e A206563 So the 6th row of our triangle gives 24, 11, 5, 3, 1, 1. %e A206563 Finally, for all partitions of 6, we can write: %e A206563 The number of odd parts is equal to T(6,1) = 24. %e A206563 The number of even parts is equal to T(6,2) = 11. %e A206563 The number of odd parts >= 3 is equal to T(6,3) = 5. %e A206563 The number of even parts >= 4 is equal to T(6,4) = 3. %e A206563 The number of odd parts >= 5 is equal to T(6,5) = 1. %e A206563 The number of even parts >= 6 is equal to T(6,6) = 1. %e A206563 More generally, we can write the same properties for any positive integer. %e A206563 Triangle begins: %e A206563 1; %e A206563 2, 1; %e A206563 5, 1, 1; %e A206563 8, 4, 1, 1; %e A206563 15, 5, 3, 1, 1; %e A206563 24, 11, 5, 3, 1, 1; %e A206563 39, 15, 9, 4, 3, 1, 1; %e A206563 58, 28, 13, 9, 4, 3, 1, 1; %e A206563 90, 38, 23, 12, 8, 4, 3, 1, 1; %e A206563 130, 62, 33, 21, 12, 8, 4, 3, 1, 1; %Y A206563 Columns 1-2 give A066897, A066898. %Y A206563 Cf. A006128, A066633, A181187, A182703, A207031, A207032. %K A206563 nonn,tabl %O A206563 1,2 %A A206563 _Omar E. Pol_, Feb 15 2012 %E A206563 More terms from _Alois P. Heinz_, Feb 18 2012