This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206582 #13 May 14 2024 00:44:43 %S A206582 5,2,19,45,71,153,199,589,301,989,526,1711,739,1633,631,3886,1324, %T A206582 4897,2524,7021,2374,4189,2311,10033,3571,3901,2326,8869,4789,10873, %U A206582 6301,10921,6451,11929,6841,12709,7996,13561,7351,19177,9949,16969,12286,22969,11341 %N A206582 The least nonsquare number s having exactly n twos in the periodic part of the continued fraction of sqrt(s). %p A206582 V:= Array(0..50): count:= 0: %p A206582 with(NumberTheory): %p A206582 for i from 2 while count < 51 do %p A206582 if issqr(i) then next fi; %p A206582 cf:= Term(ContinuedFraction(sqrt(i)),periodic); %p A206582 v:= numboccur(cf[2],2); %p A206582 if v <= 50 and V[v] = 0 then %p A206582 V[v]:= i; count:= count+1; %p A206582 fi; %p A206582 od: %p A206582 convert(V,list); # _Robert Israel_, May 13 2024 %t A206582 nn = 50; zeros = nn; t = Table[0, {nn}]; k = 2; While[zeros > 0, If[! IntegerQ[Sqrt[k]], cnt = Count[ContinuedFraction[Sqrt[k]][[2]], 2]; If[cnt <= nn && t[[cnt]] == 0, t[[cnt]] = k; zeros--]]; k++]; Join[{5}, t] %Y A206582 Cf. A206578 (n ones), A206583 (n threes), A206584 (n fours), A206585 (n fives). %K A206582 nonn %O A206582 0,1 %A A206582 _T. D. Noe_, Mar 19 2012 %E A206582 Corrected by _Robert Israel_, May 13 2024