This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206586 #19 Jan 05 2025 19:51:39 %S A206586 3,6,7,8,11,12,14,15,18,19,20,21,22,23,24,27,28,30,31,32,33,34,35,38, %T A206586 39,40,42,43,44,45,46,47,48,51,52,54,55,56,57,59,60,62,63,66,67,68,69, %U A206586 70,71,72,75,76,77,78,79,80,83,84,86,87,88,90,91,92,93,94 %N A206586 Numbers k such that the periodic part of the continued fraction of sqrt(k) has positive even length. %C A206586 By making the length positive, we exclude squares. See A206587 for this sequence and the squares. All primes of the form 4m + 3 are here. %H A206586 T. D. Noe, <a href="/A206586/b206586.txt">Table of n, a(n) for n = 1..1000</a> %H A206586 P. J. Rippon and H. Taylor, <a href="https://web.archive.org/web/2024*/https://www.fq.math.ca/Papers1/42-2/quartrippon02_2004.pdf">Even and odd periods in continued fractions of square roots</a>, Fibonacci Quarterly 42, May 2004, pp. 170-180. %t A206586 Select[Range[100], ! IntegerQ[Sqrt[#]] && EvenQ[Length[ContinuedFraction[Sqrt[#]][[2]]]] &] %o A206586 (PARI) %o A206586 cyc(cf) = { %o A206586 if(#cf==1, return(0)); \\ There is no cycle %o A206586 my(s=[]); %o A206586 for(k=2, #cf, %o A206586 s=concat(s, cf[k]); %o A206586 if(cf[k]==2*cf[1], return(s)) \\ Cycle found %o A206586 ); %o A206586 0 \\ Cycle not found %o A206586 } %o A206586 select(n->(t=#cyc(contfrac(sqrt(n))))>0 && t%2==0, vector(100, n, n)) \\ _Colin Barker_, Oct 19 2014 %Y A206586 Cf. A003814 (period is odd), A206587. %K A206586 nonn %O A206586 1,1 %A A206586 _T. D. Noe_, Mar 19 2012