This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206588 #10 Mar 30 2012 18:58:12 %S A206588 0,1,1,0,1,1,2,1,1,0,1,1,1,2,2,0,2,1,2,1,1,1,2,1,1,0,2,0,3,1,2,2,3,1, %T A206588 3,1,1,2,2,1,3,1,3,2,2,1,3,1,3,2,2,1,2,1,1,1,1,1,2,0,1,1,0,1,2,1,1,2, %U A206588 1,1,1,1,2,2,3,0,3,0,1,1,2,0,4,1,2,1,3,1,5,1,1,0,1,0,2,0,2,1,2 %N A206588 Number of solutions k of prime(k)=prime(n) (mod n), where 1<=k<n. %C A206588 In the following guide to related sequences, c(n) is the number of solutions (n,k) of s(k)=s(n) (mod n), where 1<=k<n. %C A206588 s(n).............c(n) %C A206588 prime(n).........A206588 %C A206588 prime(n+1).......A206589 %C A206588 n^2..............A057918 %C A206588 n^3..............A206590 %C A206588 Fibonacci(n+1)...A206713 %C A206588 2^(n-1)..........A206714 %C A206588 n!...............A072480 %C A206588 n(n+1)/2.........A206824 %C A206588 n^4..............A206825 %C A206588 n(n+1)(n+2)/6....A206826 %C A206588 n(n+1)(2n+1)/6...A206827 %C A206588 C(2n,n)..........A206828 %C A206588 For some choices of s, the limiting frequency of 0's in c appears to be a positive constant. %e A206588 For k=1 to 7, the numbers p(8)-p(k) are 17,16,14,12,8,6,4, so that a(8)=2. %t A206588 f[n_, k_] := If[Mod[Prime[n] - Prime[k], n] == 0, 1, 0]; %t A206588 t[n_] := Flatten[Table[f[n, k], {k, 1, n - 1}]] %t A206588 a[n_] := Count[Flatten[t[n]], 1] %t A206588 Table[a[n], {n, 2, 120}] (* A206588 *) %Y A206588 Cf. A206589. %K A206588 nonn %O A206588 2,7 %A A206588 _Clark Kimberling_, Feb 09 2012