A206827 Number of solutions (n,k) of s(k) == s(n) (mod n), where 1 <= k < n and s(k) = k*(k+1)*(2*k+1)/6.
1, 1, 1, 2, 2, 2, 1, 1, 3, 2, 2, 2, 3, 3, 1, 2, 1, 2, 3, 3, 3, 2, 1, 2, 3, 1, 3, 2, 3, 2, 1, 3, 3, 8, 1, 2, 3, 3, 3, 2, 4, 2, 3, 3, 3, 2, 2, 2, 3, 3, 3, 2, 2, 8, 3, 3, 3, 2, 2, 2, 3, 3, 1, 8, 3, 2, 3, 3, 9, 2, 1, 2, 3, 3, 3, 8, 2, 2, 3, 1, 3, 2, 4, 8, 3, 3, 3, 2, 5, 8, 3, 3, 3, 8, 2, 2, 3, 3, 3
Offset: 2
Keywords
Examples
5 divides exactly two of the numbers s(n)-s(k) for k=1,2,3,4, so a(5)=2.
Links
- Robert Israel, Table of n, a(n) for n = 2..10000
Crossrefs
Cf. A206588.
Programs
-
Maple
f:= n -> numboccur(S[n] mod n, S[1..n-1] mod n): S:= [seq(k*(k+1)*(2*k+1)/6, k=1..100)]: map(f,[$2..100]); # Robert Israel, Jun 04 2023
-
Mathematica
s[k_] := k (k + 1) (2 k + 1)/6; f[n_, k_] := If[Mod[s[n] - s[k], n] == 0, 1, 0]; t[n_] := Flatten[Table[f[n, k], {k, 1, n - 1}]] a[n_] := Count[Flatten[t[n]], 1] Table[a[n], {n, 2, 120}] (* A206827 *)
Comments