This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206603 #30 Oct 28 2024 12:57:07 %S A206603 0,0,1,4,13,36,94,232,557,1300,2986,6744,15074,33320,73116,159184, %T A206603 344701,742068,1590898,3395320,7222550,15308920,32362276,68213424, %U A206603 143463378,300999816,630353764,1317415792,2748991012,5726300880,11911913912,24742452128,51331847709 %N A206603 Maximal apex value of an addition triangle whose base is a permutation of {k-n/2, k=0..n}. %C A206603 The base row of the addition triangle contains a permutation of the n+1 integers or half-integers {k-n/2, k=0..n}. Each number in a higher row is the sum of the two numbers directly below it. Rows above the base row contain only integers. The base row consists of integers iff n is even. %C A206603 Because of symmetry, a(n) is also the absolute value of the minimal apex value of an addition triangle whose base is a permutation of {k-n/2, k=0..n}. %C A206603 a(n) is odd iff n = 2^m and m > 0. %H A206603 Alois P. Heinz, <a href="/A206603/b206603.txt">Table of n, a(n) for n = 0..1000</a> %F A206603 a(n) = Sum_{k=0..n} C(n,floor(k/2)) * (k-n/2). %F A206603 G.f.: (1-sqrt(1-4*x^2)) / (2*(2*x-1)^2). %F A206603 a(n) = A189390(n)-A001787(n) = A001787(n)-A189391(n) = (A189390(n)-A189391(n))/2 = (A206604(n)-1)/2. %e A206603 a(3) = 4: max: 4 min: -4 %e A206603 1 3 -1 -3 %e A206603 -1 2 1 1 -2 -1 %e A206603 -3/2 1/2 3/2 -1/2 3/2 -1/2 -3/2 1/2 %e A206603 a(4) = 13: max: 13 min: -13 %e A206603 5 8 -5 -8 %e A206603 0 5 3 0 -5 -3 %e A206603 -2 2 3 0 2 -2 -3 0 %e A206603 -2 0 2 1 -1 2 0 -2 -1 1 %p A206603 a:= n-> add (binomial(n, floor(k/2))*(k-n/2), k=0..n): %p A206603 seq (a(n), n=0..40); %p A206603 # second Maple program: %p A206603 a:= proc(n) option remember; `if`(n<3, n*(n-1)/2, %p A206603 ((2*n^2-6)*a(n-1) +4*(n-1)*(n-4)*a(n-2) %p A206603 -8*(n-1)*(n-2)*a(n-3)) / (n*(n-2))) %p A206603 end: %p A206603 seq(a(n), n=0..40); # _Alois P. Heinz_, Apr 25 2013 %t A206603 a = DifferenceRoot[Function[{y, n}, {8(n+1)(n+2)y[n] - 4(n-1)(n+2)y[n+1] - (2n^2 + 12n + 12)y[n+2] + (n+1)(n+3)y[n+3] == 0, y[0] == 0, y[1] == 0, y[2] == 1, y[3] == 4}]]; %t A206603 Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Dec 20 2020, after _Alois P. Heinz_ *) %o A206603 (PARI) a(n) = sum(k=0, n, binomial(n, k\2)*(k-n/2)); \\ _Michel Marcus_, Dec 20 2020 %o A206603 (Python) %o A206603 from math import comb %o A206603 def A206603(n): return sum(comb(n,k>>1)*((k<<1)-n) for k in range(n+1))>>1 # _Chai Wah Wu_, Oct 28 2024 %Y A206603 Cf. A001787, A189390, A189391, A206604. %K A206603 nonn %O A206603 0,4 %A A206603 _Alois P. Heinz_, Feb 10 2012