A206614 Number of (n+1) X 2 0..2 arrays with every 2 X 3 or 3 X 2 subblock having no more than two equal edges, and new values 0..2 introduced in row major order.
14, 86, 580, 4035, 27895, 192358, 1327931, 9168477, 63292982, 436934969, 3016371943, 20823400074, 143753294443, 992394181981, 6850947582710, 47295197965905, 326500200032495, 2253978967732298, 15560239102262371
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0....0..0....0..0....0..0....0..0....0..1....0..0....0..1....0..0....0..0 ..1..2....1..1....0..1....0..1....0..1....2..2....0..1....2..0....0..1....1..2 ..2..1....1..2....1..2....2..0....1..2....2..1....1..2....1..2....1..2....2..1 ..2..2....2..0....0..2....2..2....0..2....0..2....2..2....2..0....1..1....2..0 ..1..0....1..1....0..1....0..0....2..0....2..2....2..1....0..1....2..0....2..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A206621.
Formula
Empirical: a(n) = 7*a(n-1) - 5*a(n-2) + 36*a(n-3) - 42*a(n-4) for n>5.
Empirical g.f.: x*(14 - 12*x + 48*x^2 - 99*x^3 + 42*x^4) / (1 - 7*x + 5*x^2 - 36*x^3 + 42*x^4). - Colin Barker, Jun 17 2018
Comments