cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A206613 Number of (n+1)X(n+1) 0..2 arrays with every 2X3 or 3X2 subblock having no more than two equal edges, and new values 0..2 introduced in row major order.

Original entry on oeis.org

14, 1155, 623933, 1719525751, 24021101375251, 1738678950539792051
Offset: 1

Views

Author

R. H. Hardin Feb 10 2012

Keywords

Comments

Diagonal of A206621

Examples

			Some solutions for n=4
..0..0..1..2..2....0..0..0..0..1....0..0..0..1..2....0..0..1..2..2
..2..1..2..1..1....1..2..1..2..0....1..0..2..0..2....2..1..0..0..1
..1..2..1..1..2....1..0..2..1..0....0..1..0..0..1....2..0..1..1..0
..1..1..0..2..1....1..2..0..0..2....2..0..2..2..0....0..2..2..0..1
..2..0..1..2..1....0..0..1..0..1....1..2..1..2..1....0..1..0..2..1
		

A206614 Number of (n+1) X 2 0..2 arrays with every 2 X 3 or 3 X 2 subblock having no more than two equal edges, and new values 0..2 introduced in row major order.

Original entry on oeis.org

14, 86, 580, 4035, 27895, 192358, 1327931, 9168477, 63292982, 436934969, 3016371943, 20823400074, 143753294443, 992394181981, 6850947582710, 47295197965905, 326500200032495, 2253978967732298, 15560239102262371
Offset: 1

Views

Author

R. H. Hardin, Feb 10 2012

Keywords

Comments

Column 1 of A206621.

Examples

			Some solutions for n=4:
..0..0....0..0....0..0....0..0....0..0....0..1....0..0....0..1....0..0....0..0
..1..2....1..1....0..1....0..1....0..1....2..2....0..1....2..0....0..1....1..2
..2..1....1..2....1..2....2..0....1..2....2..1....1..2....1..2....1..2....2..1
..2..2....2..0....0..2....2..2....0..2....0..2....2..2....2..0....1..1....2..0
..1..0....1..1....0..1....0..0....2..0....2..2....2..1....0..1....2..0....2..1
		

Crossrefs

Cf. A206621.

Formula

Empirical: a(n) = 7*a(n-1) - 5*a(n-2) + 36*a(n-3) - 42*a(n-4) for n>5.
Empirical g.f.: x*(14 - 12*x + 48*x^2 - 99*x^3 + 42*x^4) / (1 - 7*x + 5*x^2 - 36*x^3 + 42*x^4). - Colin Barker, Jun 17 2018

A206615 Number of (n+1)X3 0..2 arrays with every 2X3 or 3X2 subblock having no more than two equal edges, and new values 0..2 introduced in row major order.

Original entry on oeis.org

86, 1155, 17708, 270869, 4099700, 62250328, 945314307, 14350695690, 217872572862, 3307774471061, 50218674117508, 762421824428498, 11575121642488239, 175733960717293322, 2668000123752680318
Offset: 1

Views

Author

R. H. Hardin Feb 10 2012

Keywords

Comments

Column 2 of A206621

Examples

			Some solutions for n=4
..0..0..1....0..0..0....0..0..1....0..0..0....0..0..0....0..1..0....0..0..0
..2..1..2....1..2..1....2..0..1....1..0..1....1..2..1....2..1..2....1..0..1
..0..1..2....1..0..2....0..1..2....2..1..0....0..2..0....2..0..1....0..2..0
..1..2..0....0..1..0....1..1..2....0..1..1....0..1..2....0..1..1....0..0..2
..0..1..0....2..0..2....0..0..1....2..0..1....1..0..1....0..1..0....0..1..0
		

Formula

Empirical: a(n) = 14*a(n-1) +9*a(n-2) +199*a(n-3) -961*a(n-4) +12*a(n-5) -65*a(n-6) +4451*a(n-7) -2813*a(n-8) +623*a(n-9) -1152*a(n-10) +1104*a(n-11) -1036*a(n-12) +248*a(n-13) -408*a(n-14) +280*a(n-15)

A206616 Number of (n+1)X4 0..2 arrays with every 2X3 or 3X2 subblock having no more than two equal edges, and new values 0..2 introduced in row major order.

Original entry on oeis.org

580, 17708, 623933, 21744156, 752689692, 26135187233, 907138039901, 31481198946322, 1092605572922527, 37920364043243138, 1316071917345653001, 45675935634088583339, 1585240798851880252784, 55017771164461157130806
Offset: 1

Views

Author

R. H. Hardin Feb 10 2012

Keywords

Comments

Column 3 of A206621

Examples

			Some solutions for n=4
..0..0..0..0....0..0..1..2....0..1..2..1....0..0..1..2....0..1..0..2
..1..2..1..2....0..1..0..0....1..0..1..2....2..1..2..2....1..2..2..1
..1..0..0..0....2..0..2..1....0..1..1..2....1..0..0..1....1..0..1..2
..1..2..1..2....1..0..2..0....0..2..0..1....1..2..1..2....0..1..2..0
..2..1..0..2....0..1..0..1....1..2..1..2....2..0..2..0....0..2..0..0
		

Formula

Empirical: a(n) = 37*a(n-1) -193*a(n-2) +4563*a(n-3) -26088*a(n-4) +213640*a(n-5) -2282905*a(n-6) +369531*a(n-7) +59365865*a(n-8) -119009270*a(n-9) -262257680*a(n-10) +527736231*a(n-11) +509956986*a(n-12) +4324710244*a(n-13) -23957378452*a(n-14) +23663119594*a(n-15) +61337666069*a(n-16) -218666604368*a(n-17) +228502952174*a(n-18) -85986086663*a(n-19) +669360026328*a(n-20) -249999620622*a(n-21) -2694789374595*a(n-22) +3166056347472*a(n-23) -4527450747937*a(n-24) +1962425462655*a(n-25) +11253630720214*a(n-26) -6950215731178*a(n-27) -8616642530280*a(n-28) +5352219023522*a(n-29) +18282316992761*a(n-30) +7753157593402*a(n-31) -40511908730324*a(n-32) +4939025872094*a(n-33) -60334135799883*a(n-34) +58664554195163*a(n-35) -121534792363268*a(n-36) +68593536567899*a(n-37) +27074083178241*a(n-38) +308051491547424*a(n-39) -39985515053935*a(n-40) +39295040533166*a(n-41) +83890931412882*a(n-42) -250291599920068*a(n-43) -288209619371358*a(n-44) -184438801479103*a(n-45) +38926434092468*a(n-46) -59238978126303*a(n-47) +106546892950000*a(n-48) +214149676500053*a(n-49) +116025062188772*a(n-50) -2859191597854*a(n-51) +39054500953935*a(n-52) -17011926676243*a(n-53) -44327153317680*a(n-54) -19261125626130*a(n-55) -3153801775828*a(n-56) -4604960888768*a(n-57) -7048617640872*a(n-58) -822479585408*a(n-59) +2623759339152*a(n-60) +177002043136*a(n-61) -414732129408*a(n-62) +52243793472*a(n-63) -4364697600*a(n-64) -4934155008*a(n-65) +884524032*a(n-66) -33288192*a(n-67)

A206617 Number of (n+1)X5 0..2 arrays with every 2X3 or 3X2 subblock having no more than two equal edges, and new values 0..2 introduced in row major order.

Original entry on oeis.org

4035, 270869, 21744156, 1719525751, 135010973857, 10633148505553, 837071761231340, 65890955765683798, 5187056339251009089, 408327809631129343522, 32143691853804370071056, 2530367382763227289642909
Offset: 1

Views

Author

R. H. Hardin Feb 10 2012

Keywords

Comments

Column 4 of A206621

Examples

			Some solutions for n=4
..0..1..0..2..1....0..0..0..1..2....0..0..0..1..0....0..0..0..0..0
..1..1..2..1..1....2..0..2..0..1....2..0..1..2..0....1..2..1..2..1
..2..1..0..1..0....1..2..0..0..1....1..2..0..2..1....2..1..2..1..0
..1..2..2..2..1....2..2..0..1..0....1..2..0..1..2....1..0..0..2..1
..1..0..1..0..1....2..0..2..0..0....2..0..2..1..2....1..2..1..1..2
		

A206618 Number of (n+1) X 6 0..2 arrays with every 2 X 3 or 3 X 2 subblock having no more than two equal edges, and new values 0..2 introduced in row major order.

Original entry on oeis.org

27895, 4099700, 752689692, 135010973857, 24021101375251, 4289914143971114, 765786718381692875, 136684817422844172008, 24398259565684468482150, 4355036966257280535391081, 777364691410538473251350415
Offset: 1

Views

Author

R. H. Hardin Feb 10 2012

Keywords

Comments

Column 5 of A206621.

Examples

			Some solutions for n=4
..0..0..1..0..1..0....0..1..1..2..0..1....0..0..0..0..1..1....0..0..0..1..2..1
..0..1..0..0..0..2....2..2..0..1..1..2....1..2..1..2..2..0....2..0..1..0..2..2
..2..0..2..1..2..0....2..1..2..2..0..0....0..0..0..2..0..2....0..1..2..0..1..0
..0..1..2..0..1..1....1..0..2..0..1..1....2..0..1..0..1..0....2..2..0..1..2..2
..2..2..1..0..2..0....2..2..1..2..0..1....0..1..2..0..0..2....2..1..2..1..2..0
		

Crossrefs

Cf. A206621.

A206619 Number of (n+1)X7 0..2 arrays with every 2X3 or 3X2 subblock having no more than two equal edges, and new values 0..2 introduced in row major order.

Original entry on oeis.org

192358, 62250328, 26135187233, 10633148505553, 4289914143971114, 1738678950539792051, 704228581922250103909, 285197699391932223744199, 115508361295861948938141134, 46781700029539016314279246512
Offset: 1

Views

Author

R. H. Hardin Feb 10 2012

Keywords

Comments

Column 6 of A206621

Examples

			Some solutions for n=4
..0..0..1..1..0..0..1....0..1..0..2..1..2..2....0..0..0..0..0..0..1
..0..2..0..2..0..1..2....1..1..0..1..2..0..0....2..1..2..1..2..1..2
..1..0..2..1..1..2..2....2..0..1..2..0..0..1....0..0..2..0..2..0..1
..2..2..1..0..0..1..0....1..2..0..1..2..2..0....2..1..0..1..1..1..0
..1..2..1..0..1..2..0....0..1..1..2..0..1..2....1..0..1..2..1..2..1
		

A206620 Number of (n+1)X8 0..2 arrays with every 2X3 or 3X2 subblock having no more than two equal edges, and new values 0..2 introduced in row major order.

Original entry on oeis.org

1327931, 945314307, 907138039901, 837071761231340, 765786718381692875, 704228581922250103909
Offset: 1

Views

Author

R. H. Hardin Feb 10 2012

Keywords

Comments

Column 7 of A206621

Examples

			Some solutions for n=4
..0..0..0..1..2..1..2..2....0..0..0..0..1..0..0..1....0..1..2..1..2..1..2..1
..1..2..1..2..2..2..0..0....1..2..1..2..1..2..1..0....1..0..1..1..0..1..1..2
..2..1..2..0..1..0..1..2....0..0..0..0..1..0..2..1....0..2..1..2..1..0..0..1
..2..0..2..2..0..1..2..1....1..2..1..2..0..1..2..0....1..0..2..0..2..2..1..2
..2..1..2..1..2..2..1..1....0..1..2..0..2..0..2..1....2..2..1..1..1..0..0..2
		
Showing 1-8 of 8 results.