cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206636 a(n) = 2^^(n+2) modulo 10^n, where ^^ denotes a power tower (see A133612).

Original entry on oeis.org

6, 36, 736, 8736, 48736, 948736, 2948736, 32948736, 432948736, 3432948736, 53432948736, 353432948736, 5353432948736, 75353432948736, 75353432948736, 5075353432948736, 15075353432948736, 615075353432948736, 8615075353432948736, 98615075353432948736, 98615075353432948736, 8098615075353432948736
Offset: 1

Views

Author

Marco Ripà, Feb 10 2012

Keywords

Comments

Backward concatenation of A133612.
For all m>n+1, 2^^m == 2^^(n+2) (mod 10^n). Hence, each term represents the trailing decimal digits of 2^^m for every sufficiently large m.

References

  • M. Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011. ISBN 978-88-6178-789-6.

Crossrefs

Programs

  • Mathematica
    (* first load all lines of Super Power Mod by Ilan Vardi from the hyper-link, then *) $RecursionLimit = 2^14;  a[n_] := SuperPowerMod[2, n +2, 10^n]; Array[a, 22] (* Robert G. Wilson v, Apr 20 2020 *)

Formula

a(n) = A014221(n+3) mod (10^n).
For n>1, a(n) = 2^a(n-1) mod 10^n.