cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206687 Number of n X 2 0..3 arrays with no element equal to another within two positions in the same row or column, and new values 0..3 introduced in row major order.

Original entry on oeis.org

1, 4, 11, 36, 116, 376, 1216, 3936, 12736, 41216, 133376, 431616, 1396736, 4519936, 14626816, 47333376, 153174016, 495681536, 1604059136, 5190844416, 16797925376, 54359228416, 175910158336, 569257230336, 1842155094016, 5961339109376
Offset: 1

Views

Author

R. H. Hardin, Feb 11 2012

Keywords

Comments

Column 2 of A206692.

Examples

			All solutions for n=4:
..0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
..2..3....1..0....2..3....1..0....2..3....1..2....1..2....1..2....1..0
..1..2....2..3....1..0....2..3....3..2....2..0....3..0....2..3....2..3
..0..1....3..2....3..1....3..1....1..0....3..1....0..1....0..1....0..1
		

Crossrefs

Cf. A206692.

Formula

Empirical: a(n) = 2*a(n-1) + 4*a(n-2) for n>4.
Conjectures from Colin Barker, Feb 23 2018: (Start)
G.f.: x*(1 - x)*(1 + x)*(1 + 2*x) / (1 - 2*x - 4*x^2).
a(n) = ((1-sqrt(5))^n*(-5+3*sqrt(5)) + (1+sqrt(5))^n*(5+3*sqrt(5))) / (16*sqrt(5)) for n>2.
(End)