cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206689 Number of nX5 0..3 arrays with no element equal to another within two positions in the same row or column, and new values 0..3 introduced in row major order.

This page as a plain text file.
%I A206689 #7 Jul 22 2025 19:36:31
%S A206689 4,116,704,4704,31504,213788,1454810,9933294,67923354,464901756,
%T A206689 3183631874,21807955698,149409637478,1023727198288,7014765000890,
%U A206689 48067928493696,329386094806172,2257144779520590,15467353757059122
%N A206689 Number of nX5 0..3 arrays with no element equal to another within two positions in the same row or column, and new values 0..3 introduced in row major order.
%C A206689 Column 5 of A206692
%H A206689 R. H. Hardin, <a href="/A206689/b206689.txt">Table of n, a(n) for n = 1..210</a>
%F A206689 Empirical: a(n) = 15*a(n-1) -51*a(n-2) -193*a(n-3) +1051*a(n-4) +2372*a(n-5) -12985*a(n-6) -28529*a(n-7) +129318*a(n-8) +212356*a(n-9) -839013*a(n-10) -1225696*a(n-11) +3710749*a(n-12) +5631517*a(n-13) -12635093*a(n-14) -10482155*a(n-15) +20618112*a(n-16) -52448859*a(n-17) +89397201*a(n-18) +475219332*a(n-19) -737964757*a(n-20) -2124354526*a(n-21) +2768115261*a(n-22) +6892655423*a(n-23) -7216788413*a(n-24) -17073837012*a(n-25) +13711465539*a(n-26) +33849631222*a(n-27) -19860441490*a(n-28) -54273123627*a(n-29) +22693872893*a(n-30) +69529238877*a(n-31) -18479245923*a(n-32) -75447262323*a(n-33) +12929746123*a(n-34) +69053543781*a(n-35) -12580606120*a(n-36) -47563475725*a(n-37) +7500075785*a(n-38) +28981491455*a(n-39) -2451216650*a(n-40) -19568112616*a(n-41) +4647832637*a(n-42) +9173909442*a(n-43) -4357897047*a(n-44) -1874621589*a(n-45) +1362472381*a(n-46) +274611989*a(n-47) -277377765*a(n-48) -85579555*a(n-49) +103689018*a(n-50) -6885628*a(n-51) -13682116*a(n-52) +1459344*a(n-53) +585424*a(n-54) +164352*a(n-55) for n>57
%e A206689 Some solutions for n=4
%e A206689 ..0..1..2..0..3....0..1..2..0..1....0..1..2..3..1....0..1..2..0..3
%e A206689 ..2..3..1..2..0....1..3..0..1..3....1..3..0..1..2....1..3..0..1..2
%e A206689 ..1..2..3..1..2....2..0..3..2..0....3..2..1..0..3....2..0..1..2..0
%e A206689 ..0..1..2..0..1....3..1..2..3..1....2..1..3..2..0....3..1..2..0..1
%K A206689 nonn
%O A206689 1,1
%A A206689 _R. H. Hardin_ Feb 11 2012