A206694 Number of n X 2 0..2 arrays avoiding the pattern z-2 z-1 z in any row or column.
9, 81, 676, 5625, 46656, 386884, 3207681, 26594649, 220492801, 1828075536, 15156318321, 125658906256, 1041820324416, 8637585806529, 71613009227809, 593733388556025, 4922560027477764, 40812252925262329, 338368649551172496
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..1....0..2....0..2....2..0....0..2....2..1....0..1....1..1....1..2....1..2 ..2..1....2..2....1..1....0..2....0..2....0..2....2..1....1..0....2..2....2..0 ..2..2....0..0....0..0....1..0....2..2....1..2....2..0....1..2....1..2....0..1 ..0..0....2..1....0..1....1..2....0..2....0..1....0..1....1..2....2..2....1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A206700.
Formula
Empirical: a(n) = 9*a(n-1) -3*a(n-2) -25*a(n-3) +9*a(n-4) +3*a(n-5) -a(n-6).
Empirical g.f.: x*(9 - 26*x^2 + 9*x^3 + 3*x^4 - x^5) / ((1 - 9*x + 6*x^2 - x^3)*(1 - 3*x^2 - x^3)). - Colin Barker, Feb 23 2018
Comments