cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206703 Triangular array read by rows. T(n,k) is the number of partial permutations (injective partial functions) of {1,2,...,n} that have exactly k elements in a cycle. The k elements are not necessarily in the same cycle. A fixed point is considered to be in a cycle.

This page as a plain text file.
%I A206703 #39 Feb 19 2022 18:46:55
%S A206703 1,1,1,3,2,2,13,9,6,6,73,52,36,24,24,501,365,260,180,120,120,4051,
%T A206703 3006,2190,1560,1080,720,720,37633,28357,21042,15330,10920,7560,5040,
%U A206703 5040,394353,301064,226856,168336,122640,87360,60480,40320,40320
%N A206703 Triangular array read by rows.  T(n,k) is the number of partial permutations (injective partial functions) of {1,2,...,n} that have exactly k elements in a cycle.  The k elements are not necessarily in the same cycle.  A fixed point is considered to be in a cycle.
%D A206703 Mohammad K. Azarian, On the Fixed Points of a Function and the Fixed Points of its Composite Functions, International Journal of Pure and Applied Mathematics, Vol. 46, No. 1, 2008, pp. 37-44.  Mathematical Reviews, MR2433713 (2009c:65129), March 2009.  Zentralblatt MATH, Zbl 1160.65015.
%D A206703 Mohammad K. Azarian, Fixed Points of a Quadratic Polynomial, Problem 841, College Mathematics Journal, Vol. 38, No. 1, January 2007, p. 60.  Solution published in Vol. 39, No. 1, January 2008, pp. 66-67.
%H A206703 Alois P. Heinz, <a href="/A206703/b206703.txt">Rows n = 0..140, flattened</a>
%H A206703 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 132.
%F A206703 E.g.f.: exp(x/(1-x))/(1-y*x).
%F A206703 From _Alois P. Heinz_, Feb 19 2022: (Start)
%F A206703 Sum_{k=1..n} T(n,k) = A052852.
%F A206703 Sum_{k=0..n} k * T(n,k) = A103194(n).
%F A206703 Sum_{k=0..n} (n-k) * T(n,k) =  A105219(n).
%F A206703 Sum_{k=0..n} (-1)^k * T(n,k) = A331725(n). (End)
%e A206703      1;
%e A206703      1,     1;
%e A206703      3,     2,     2;
%e A206703     13,     9,     6,     6;
%e A206703     73,    52,    36,    24,    24;
%e A206703    501,   365,   260,   180,   120,  120;
%e A206703   4051,  3006,  2190,  1560,  1080,  720,   720;
%e A206703   ...
%p A206703 b:= proc(n) option remember; `if`(n=0, 1, add((p-> p+x^j*
%p A206703       coeff(p, x, 0))(b(n-j)*binomial(n-1, j-1)*j!), j=1..n))
%p A206703     end:
%p A206703 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n)):
%p A206703 seq(T(n), n=0..10);  # _Alois P. Heinz_, Feb 19 2022
%t A206703 nn = 7; a = 1/(1 - x); ay = 1/(1 - y x); f[list_] := Select[list, # > 0 &]; Map[f, Range[0, nn]! CoefficientList[Series[Exp[a x] ay, {x, 0, nn}], {x, y}]] // Flatten
%Y A206703 Columns k = 0..1 give: A000262, A006152.
%Y A206703 Main diagonal gives A000142.
%Y A206703 Row sums give A002720.
%Y A206703 T(2n,n) gives A088026.
%Y A206703 Cf. A002720, A052852, A103194, A105219, A331725.
%K A206703 nonn,tabl
%O A206703 0,4
%A A206703 _Geoffrey Critzer_, Feb 11 2012