This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206709 #62 Apr 25 2025 16:00:07 %S A206709 5,19,112,841,6656,54110,456362,3954181,34900213,312357934,2826683630, %T A206709 25814570672,237542444180,2199894223892 %N A206709 Number of primes of the form b^2 + 1 for b <= 10^n. %C A206709 Conjecture: The number of primes of the form b^2 + 1 and less than n is asymptotic to 3*n/(4*log(n)). %C A206709 Examples: %C A206709 n = 10^3, a(n) = 112 and 3*10^3/(4*log(10^3)) = 108.573...; %C A206709 n = 10^4, a(n) = 841 and 3*10^4/(4*log(10^4)) = 814.302...; %C A206709 n = 10^10, a(n) = 312357934 and 3*10^10/(4*log(10^10)) = 325720861.42... %C A206709 a(n) = A083844(2*n), but not always! The only known exception to this rule is at n = 1. - _Arkadiusz Wesolowski_, Jul 21 2012 %C A206709 From _Jacques Tramu_, Sep 14 2018: (Start) %C A206709 In the table below, K = 0.686413 and pi(10^n) = A000720(10^n): %C A206709 . %C A206709 n a(n) K*pi(10^n) %C A206709 == =========== =========== %C A206709 1 5 3 %C A206709 2 19 17 %C A206709 3 112 115 %C A206709 4 841 843 %C A206709 5 6656 6584 %C A206709 6 54110 53882 %C A206709 7 456362 456175 %C A206709 8 3954181 3954737 %C A206709 9 34900213 34902408 %C A206709 10 312357934 312353959 %C A206709 11 2826683630 2826686358 %C A206709 12 25814570672 25814559712 %C A206709 (End) %C A206709 For a comparison with the estimate that results from the Hardy and Littlewood Conjecture F, see A331942. - _Hugo Pfoertner_, Feb 03 2020 %D A206709 Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See p. 264. %H A206709 Soren Laing Aletheia-Zomlefer, Lenny Fukshansky, and Stephan Ramon Garcia, <a href="https://arxiv.org/abs/1807.08899">The Bateman-Horn Conjecture: Heuristics, History, and Applications</a>, arXiv:1807.08899 [math.NT], 2018-2019. See Table 2. p. 8. %H A206709 Marek Wolf, <a href="http://arxiv.org/abs/0803.1456">Search for primes of the form m^2+1</a>, arXiv:0803.1456 [math.NT], 2008-2010. %e A206709 a(2) = 19 because there are 19 primes of the form b^2 + 1 for b less than 10^2: 2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601, 2917, 3137, 4357, 5477, 7057, 8101 and 8837. %p A206709 for n from 1 to 9 do : i:=0:for m from 1 to 10^n do:x:=m^2+1:if type(x,prime)=true then i:=i+1:else fi:od: printf ( "%d %d \n",n,i):od: %t A206709 1 + Accumulate@ Array[Count[Range[10^(# - 1) + 1, 10^#], _?(PrimeQ[#^2 + 1] &)] &, 7] (* _Michael De Vlieger_, Sep 18 2018 *) %o A206709 (PARI) a(n)=sum(n=1,10^n,ispseudoprime(n^2+1)) \\ _Charles R Greathouse IV_, Feb 13 2012 %o A206709 (Python) %o A206709 from sympy import isprime %o A206709 def A206709(n): %o A206709 c, b, b2, n10 = 0, 1, 2, 10**n %o A206709 while b <= n10: %o A206709 if isprime(b2): %o A206709 c += 1 %o A206709 b += 1 %o A206709 b2 += 2*b - 1 %o A206709 return c # _Chai Wah Wu_, Sep 17 2018 %Y A206709 Cf. A002496, A083844, A215047, A331941, A331942. %K A206709 nonn,more %O A206709 1,1 %A A206709 _Michel Lagneau_, Feb 13 2012 %E A206709 a(11)-a(12) from _Arkadiusz Wesolowski_, Jul 21 2012 %E A206709 a(13)-a(14) from _Jinyuan Wang_, Feb 24 2020