cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206719 Number of distinct irreducible factors of the polynomial p(n,x) defined at A206073.

This page as a plain text file.
%I A206719 #12 Dec 18 2017 11:56:43
%S A206719 0,1,1,1,1,2,1,1,2,2,1,2,1,2,2,1,1,3,1,2,2,2,1,2,1,2,2,2,1,3,1,1,2,2,
%T A206719 2,3,1,2,2,2,1,3,1,2,3,2,1,2,2,2,2,2,1,3,1,2,2,2,1,3,1,2,3,1,2,3,1,2,
%U A206719 1,3,1,3,1,2,3,2,1,3,1,2,1,2,1,3,2,2,1,2,1,4,1,2,2,2,2,2,1,3,2
%N A206719 Number of distinct irreducible factors of the polynomial p(n,x) defined at A206073.
%C A206719 The polynomials having coefficients in {0,1} are enumerated as in A206074 (and A206073).
%H A206719 Antti Karttunen, <a href="/A206719/b206719.txt">Table of n, a(n) for n = 1..65537</a>
%e A206719 p(1,n) = 1, so a(1)=0
%e A206719 p(2,n) = x, so a(2)=1
%e A206719 p(6,n) = x(1+x), so a(6)=2
%e A206719 p(18,n) = x(x+1)(1-x+x^2), so a(18)=3
%e A206719 p(90,n) = x(1+x)(1+x^2)(1-x+x^2), so a(90)=4
%t A206719 t = Table[IntegerDigits[n, 2], {n, 1, 1000}];
%t A206719 b[n_] := Reverse[Table[x^k, {k, 0, n}]]
%t A206719 p[n_, x_] := p[n, x] = t[[n]].b[-1 + Length[t[[n]]]]
%t A206719 TableForm[Table[{n, p[n, x],
%t A206719    FactorList[p[n, x]], -1 + Length[FactorList[p[n, x]]]}, {n, 1, 9}]]
%t A206719 Table[Length[FactorList[p[n, x]]], {n, 1, 120}]
%o A206719 (PARI) A206719(n) = { my(f = factor(Pol(binary(n)))); (#f~); }; \\ _Antti Karttunen_, Dec 16 2017
%Y A206719 Cf. A206073, A206074, A257000.
%Y A206719 Cf. also A091221, A206442.
%K A206719 nonn
%O A206719 1,6
%A A206719 _Clark Kimberling_, Feb 11 2012