This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206722 #38 Feb 18 2024 01:26:08 %S A206722 1,1,1,2,1,2,1,1,2,1,1,2,1,1,1,3,1,1,1,3,2,1,1,3,2,1,1,3,2,1,1,1,3,2, %T A206722 1,1,1,3,2,1,1,1,1,3,2,1,1,1,1,3,2,1,1,1,1,4,2,1,1,1,1,4,2,1,1,1,1,1, %U A206722 4,2,1,1,1,1,1 %N A206722 Parameters of Chebyshev function psi. %C A206722 a(x,n) is the exponent k such that prime(n)^k <= x and x < prime(n)^(k+1). %C A206722 psi(x) = Sum_{p_n <= x} k*log(p_n), where a(x,n) = k is the unique integer such that p_n^k <= x but p_n^(k+1) > x. %C A206722 Related to Firoozbakht's Conjecture (1982): p_n^(1/n) > p_(n+1)^(1/(n+1)) for all n >= 1. %H A206722 N. Kanti Sinha, <a href="https://arxiv.org/abs/1010.1399">On a new property of primes that leads to a generalization of Cramer's conjecture</a>, arXiv:1010.1399 [math.NT], 2010. %H A206722 Wikipedia, <a href="http://en.wikipedia.org/wiki/Chebyshev_function#Relationships">Chebyshev function</a> %e A206722 If x = 7, then 2^2, 3^1, 5^1, 7^1 <= x < 2^3, 3^2, 5^2, 7^2, respectively so k = 2, 1, 1, 1, respectively. %e A206722 The table starts in row x=2 with columns n >= 1 as: %e A206722 1; %e A206722 1, 1; %e A206722 2, 1; %e A206722 2, 1, 1; %e A206722 2, 1, 1; %e A206722 2, 1, 1, 1; %e A206722 3, 1, 1, 1; %e A206722 3, 2, 1, 1; %e A206722 3, 2, 1, 1, 1; %t A206722 A206722[x_, n_] := Module[{p = Prime[n]}, For[k = 0, True, k++, If[p^(k+1) > x && p^k <= x, Return[k]]]]; %t A206722 Table[DeleteCases[Table[A206722[x, n], {n, 1, 17}], 0], {x, 2, 20}] // Flatten (* _Jean-François Alcover_, Sep 15 2018, after _R. J. Mathar_ *) %o A206722 (Maxima) %o A206722 prime(n) := block( %o A206722 if n = 1 then %o A206722 return(2) %o A206722 else %o A206722 return(next_prime(prime(n-1))) %o A206722 )$ /* very slow recursive definition of A000040 */ %o A206722 A206722(x,n) := block( %o A206722 local(p), %o A206722 p : prime ( n ), %o A206722 for k : 0 do ( %o A206722 if p^(k+1) > x and p^k <= x then %o A206722 return(k) %o A206722 ) %o A206722 )$ %o A206722 for x : 2 thru 20 do ( %o A206722 for n : 1 thru 17 do %o A206722 sprint(A206722(x,n)), %o A206722 newline() %o A206722 )$ /* _R. J. Mathar_, Feb 14 2012 */ %Y A206722 Columns: A000523 (n=1), A062153 (n=2). %K A206722 nonn,tabf,easy %O A206722 2,4 %A A206722 _John W. Nicholson_, Feb 11 2012