This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206763 #11 Feb 12 2018 21:06:01 %S A206763 1,1,0,3,23,225,2824,42670,762286,15647321,363901749,9443387329, %T A206763 270721307582,8493470965716,289518611494068,10653599202688527, %U A206763 420933469388468297,17773313165985120798,798686060913371460133,38058408270727983373232 %N A206763 G.f.: Product_{n>=1} [ (1 - (-x)^n) / (1 - (n-1)^n*x^n) ]^(1/n). %C A206763 Here sigma(n,k) equals the sum of the k-th powers of the divisors of n. %F A206763 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=1..n} binomial(n,k) * sigma(n,k) * (-1)^(n-k) ). %F A206763 Logarithmic derivative yields A206764. %e A206763 G.f.: A(x) = 1 + x + 3*x^3 + 23*x^4 + 225*x^5 + 2824*x^6 + 42670*x^7 +... %e A206763 where the g.f. equals the product: %e A206763 A(x) = (1+x)/(1-0*x) * ((1-x^2)/(1-1^2*x^2))^(1/2) * ((1+x^3)/(1-2^3*x^3))^(1/3) * ((1-x^4)/(1-3^4*x^4))^(1/4) * ((1+x^5)/(1-4^5*x^5))^(1/5) *... %e A206763 The logarithm equals the l.g.f. of A206764: %e A206763 log(A(x)) = x - x^2/2 + 10*x^3/3 + 79*x^4/4 + 1026*x^5/5 + 15686*x^6/6 +... %o A206763 (PARI) {a(n)=polcoeff(prod(k=1, n, ((1-(-1)^k*x^k)/(1-(k-1)^k*x^k +x*O(x^n)))^(1/k)), n)} %o A206763 (PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*sum(k=1, m, binomial(m, k)*sigma(m, k)*(-1)^(m-k))+x*O(x^n))), n)} %o A206763 for(n=0,31,print1(a(n),", ")) %Y A206763 Cf. A206764 (log), A205814, A205811. %K A206763 nonn %O A206763 0,4 %A A206763 _Paul D. Hanna_, Feb 12 2012