This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206765 #14 Feb 12 2018 21:06:08 %S A206765 1,1,12,87,907,8393,118932,1683990,31209334,635005549,15054451057, %T A206765 393600573337,11466736952722,363842430190308,12564913404375244, %U A206765 467483278911401155,18670853023655302285,795978439482823960066,36093307429580735618893 %N A206765 G.f.: Product_{n>=1} [ (1 - 3^n*x^n) / (1 - (n+3)^n*x^n) ]^(1/n). %C A206765 Here sigma(n,k) equals the sum of the k-th powers of the divisors of n. %H A206765 Vaclav Kotesovec, <a href="/A206765/b206765.txt">Table of n, a(n) for n = 0..380</a> %F A206765 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=1..n} binomial(n,k) * sigma(n,k) * 3^(n-k) ). %F A206765 Logarithmic derivative yields A206766. %F A206765 a(n) ~ exp(3) * n^(n-1). - _Vaclav Kotesovec_, Oct 08 2016 %e A206765 G.f.: A(x) = 1 + x + 12*x^2 + 87*x^3 + 907*x^4 + 8393*x^5 + 118932*x^6 +... %e A206765 where the g.f. equals the product: %e A206765 A(x) = (1-3*x)/(1-4*x) * ((1-3^2*x^2)/(1-5^2*x^2))^(1/2) * ((1-3^3*x^3)/(1-6^3*x^3))^(1/3) * ((1-3^4*x^4)/(1-7^4*x^4))^(1/4) * ((1-3^5*x^5)/(1-8^5*x^5))^(1/5) *... %e A206765 The logarithm equals the l.g.f. of A206766: %e A206765 log(A(x)) = x + 23*x^2/2 + 226*x^3/3 + 3039*x^4/4 + 33306*x^5/5 +... %t A206765 max = 19; p = Product[((1-3^n*x^n) / (1-(n+3)^n*x^n))^(1/n), {n, 1, max}] + O[x]^max; CoefficientList[p, x] (* _Jean-François Alcover_, Oct 08 2016 *) %o A206765 (PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, x^m/m*sum(k=1, m, binomial(m, k)*sigma(m, k)*3^(m-k))+x*O(x^n))), n)} %o A206765 (PARI) {a(n)=polcoeff(prod(k=1, n, ((1-3^k*x^k)/(1-(k+3)^k*x^k +x*O(x^n)))^(1/k)), n)} %o A206765 for(n=0,31,print1(a(n),", ")) %Y A206765 Cf. A206766 (log), A205814, A205811, A206763. %K A206765 nonn %O A206765 0,3 %A A206765 _Paul D. Hanna_, Feb 12 2012