A206772 Table T(n,k)=max{4*n+k-4,n+4*k-4} n, k > 0, read by antidiagonals.
1, 5, 5, 9, 6, 9, 13, 10, 10, 13, 17, 14, 11, 14, 17, 21, 18, 15, 15, 18, 21, 25, 22, 19, 16, 19, 22, 25, 29, 26, 23, 20, 20, 23, 26, 29, 33, 30, 27, 24, 21, 24, 27, 30, 33, 37, 34, 31, 28, 25, 25, 28, 31, 34, 37, 41, 38, 35, 32, 29, 26, 29, 32, 35, 38, 41, 45
Offset: 1
Examples
The start of the sequence as table for general case: 1........m+1..2*m+1..3*m+1..4*m+1..5*m+1..6*m+1 ... m+1......m+2..2*m+2..3*m+2..4*m+2..5*m+2..6*m+2 ... 2*m+1..2*m+2..2*m+3..3*m+3..4*m+3..5*m+3..6*m+3 ... 3*m+1..3*m+2..3*m+3..3*m+4..4*m+4..5*m+4..6*m+4 ... 4*m+1..4*m+2..4*m+3..4*m+4..4*m+5..5*m+5..6*m+5 ... 5*m+1..5*m+2..5*m+3..5*m+4..5*m+5..5*m+6..6*m+6 ... 6*m+1..6*m+2..6*m+3..6*m+4..6*m+5..6*m+6..6*m+7 ... . . . The start of the sequence as triangle array read by rows for general case: 1; m+1, m+1; 2*m+1, m+2, 2*m+1; 3*m+1, 2*m+2, 2*m+2, 3*m+1; 4*m+1, 3*m+2, 2*m+3, 3*m+2, 4*m+1; 5*m+1, 4*m+2, 3*m+3, 2*m+4, 3*m+3, 4*m+2; 5*m+1; 6*m+1, 5*m+2, 4*m+3, 3*m+4, 2*m+5, 3*m+4, 4*m+3; 5*m+2, 6*m+1; . . . Row number r contains r numbers: r*m+1, (r-1)*m+2, ... (r-1)*m+2, r*m+1.
Links
- Boris Putievskiy, Rows n = 1..140 of triangle, flattened
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
Programs
-
Python
t=int((math.sqrt(8*n-7)-1)/2) result=4*(t+1)+3*max(t*(t+1)/2-n,n-(t*t+3*t+4)/2)
Comments