This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206778 #23 May 02 2025 03:07:53 %S A206778 1,1,2,1,3,1,2,1,5,1,2,3,6,1,7,1,2,1,3,1,2,5,10,1,11,1,2,3,6,1,13,1,2, %T A206778 7,14,1,3,5,15,1,2,1,17,1,2,3,6,1,19,1,2,5,10,1,3,7,21,1,2,11,22,1,23, %U A206778 1,2,3,6,1,5,1,2,13,26,1,3,1,2,7,14,1,29 %N A206778 Irregular triangle in which n-th row lists squarefree divisors (A005117) of n. %H A206778 Reinhard Zumkeller, <a href="/A206778/b206778.txt">Rows n=1..1000 of triangle, flattened</a> %e A206778 Triangle begins: %e A206778 . 1: [1] %e A206778 . 2: [1, 2] %e A206778 . 3: [1, 3] %e A206778 . 4: [1, 2] %e A206778 . 5: [1, 5] %e A206778 . 6: [1, 2, 3, 6] %e A206778 . 7: [1, 7] %e A206778 . 8: [1, 2] %e A206778 . 9: [1, 3] %e A206778 . 10: [1, 2, 5, 10] %e A206778 . 11: [1, 11] %e A206778 . 12: [1, 2, 3, 6]. %p A206778 A206778 := proc(n) %p A206778 local sqdvs ,nfac,d; %p A206778 sqdvs := {} ; %p A206778 nfac := ifactors(n)[2] ; %p A206778 for d in numtheory[divisors](n) do %p A206778 if issqrfree(d) then %p A206778 sqdvs := sqdvs union {d} ; %p A206778 end if; %p A206778 end do: %p A206778 sort(sqdvs) ; %p A206778 end proc: %p A206778 seq(op(A206778(n)),n=1..10) ; # _R. J. Mathar_, Mar 06 2023 %t A206778 Flatten[Table[Select[Divisors[n],SquareFreeQ],{n,30}]] (* _Harvey P. Dale_, Apr 11 2012 *) %o A206778 (Haskell) %o A206778 a206778 n k = a206778_row n !! k %o A206778 a206778_row = filter ((== 1) . a008966) . a027750_row %o A206778 a206778_tabf = map a206778_row [1..] %o A206778 -- _Reinhard Zumkeller_, May 03 2013, Feb 12 2012 %o A206778 (PARI) row(n) = select(x -> issquarefree(x), divisors(n)); \\ _Amiram Eldar_, May 02 2025 %Y A206778 Cf. A008966, A034444 (row lengths), A048250 (row sums), A206787; A077610. %Y A206778 Cf. A027750, A050320, A050326, A050328. %K A206778 nonn,tabf %O A206778 1,3 %A A206778 _Reinhard Zumkeller_, Feb 12 2012