cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A206780 Number of nX3 0..1 arrays avoiding 0 0 1 horizontally and 0 1 1 vertically.

Original entry on oeis.org

7, 49, 230, 1020, 4120, 16109, 61003, 227197, 834806, 3041436, 11009856, 39680145, 142545383, 510891025, 1827957230, 6532356532, 23322885552, 83216416445, 296774223739, 1058010185133, 3770863749966, 13437211488900, 47875876583016
Offset: 1

Views

Author

R. H. Hardin Feb 12 2012

Keywords

Comments

Column 3 of A206785

Examples

			Some solutions for n=4
..1..1..0....0..1..1....0..0..0....1..1..1....0..1..0....1..1..0....0..1..1
..1..0..1....1..1..0....0..1..1....1..1..0....1..0..1....0..0..0....0..1..1
..1..0..0....0..1..1....1..0..0....1..0..1....0..0..0....1..1..1....0..1..1
..0..1..1....1..0..0....0..0..0....1..1..0....1..1..0....0..0..0....0..1..1
		

Formula

Empirical: a(n) = 7*a(n-1) -10*a(n-2) -23*a(n-3) +57*a(n-4) +6*a(n-5) -75*a(n-6) +21*a(n-7) +34*a(n-8) -13*a(n-9) -5*a(n-10) +2*a(n-11)

A206781 Number of nX4 0..1 arrays avoiding 0 0 1 horizontally and 0 1 1 vertically.

Original entry on oeis.org

12, 144, 1020, 6752, 39276, 219061, 1165366, 6052170, 30750128, 154046108, 762592234, 3742458919, 18234837346, 88348314182, 426051182458, 2046737779538, 9800851550334, 46804771654291, 223004711416620, 1060425465768772
Offset: 1

Views

Author

R. H. Hardin Feb 12 2012

Keywords

Comments

Column 4 of A206785

Examples

			Some solutions for n=4
..1..0..0..0....0..0..0..0....1..1..1..0....1..0..1..0....0..0..0..0
..0..1..0..0....1..0..1..1....0..1..0..0....1..1..0..0....0..0..0..0
..0..0..0..0....0..0..0..0....0..0..0..0....1..0..1..0....1..1..0..0
..1..0..1..0....0..1..0..0....1..1..0..0....1..0..0..0....0..0..0..0
		

Formula

Empirical: a(n) = 12*a(n-1) -28*a(n-2) -167*a(n-3) +737*a(n-4) +570*a(n-5) -5810*a(n-6) +1525*a(n-7) +22058*a(n-8) -14330*a(n-9) -47100*a(n-10) +38200*a(n-11) +61863*a(n-12) -52870*a(n-13) -52680*a(n-14) +42745*a(n-15) +29773*a(n-16) -20710*a(n-17) -11060*a(n-18) +5845*a(n-19) +2554*a(n-20) -872*a(n-21) -322*a(n-22) +52*a(n-23) +16*a(n-24)

A206782 Number of nX5 0..1 arrays avoiding 0 0 1 horizontally and 0 1 1 vertically.

Original entry on oeis.org

20, 400, 4120, 39276, 316744, 2431277, 17515482, 122505076, 831545408, 5542985790, 36347298916, 235599789563, 1511905540616, 9627564142088, 60901858059234, 383175178571448, 2399618712548128, 14968430954427611
Offset: 1

Views

Author

R. H. Hardin Feb 12 2012

Keywords

Comments

Column 5 of A206785

Examples

			Some solutions for n=4
..0..0..0..0..0....0..0..0..0..0....1..1..1..0..0....0..1..0..1..0
..1..0..0..0..0....1..1..1..0..1....1..1..0..1..0....1..1..0..1..1
..0..1..1..1..0....0..0..0..0..0....0..1..1..0..1....0..0..0..0..0
..0..0..0..0..0....1..1..0..0..0....0..0..0..0..0....0..1..0..0..0
		

Formula

Empirical: a(n) = 16*a(n-1) -21*a(n-2) -849*a(n-3) +3331*a(n-4) +18911*a(n-5) -107388*a(n-6) -227201*a(n-7) +1827460*a(n-8) +1515632*a(n-9) -19701428*a(n-10) -4097892*a(n-11) +145623442*a(n-12) -18920964*a(n-13) -771223206*a(n-14) +248083354*a(n-15) +3010019850*a(n-16) -1289395998*a(n-17) -8828934204*a(n-18) +4247480210*a(n-19) +19741485284*a(n-20) -9818039708*a(n-21) -33997680956*a(n-22) +16591020652*a(n-23) +45404489679*a(n-24) -20916519156*a(n-25) -47193602053*a(n-26) +19873618471*a(n-27) +38185393795*a(n-28) -14282586217*a(n-29) -23970737392*a(n-30) +7751601447*a(n-31) +11588943328*a(n-32) -3156321196*a(n-33) -4263223304*a(n-34) +952520896*a(n-35) +1171820920*a(n-36) -208873232*a(n-37) -234267016*a(n-38) +32242920*a(n-39) +32698472*a(n-40) -3319328*a(n-41) -2982448*a(n-42) +204992*a(n-43) +157440*a(n-44) -5760*a(n-45) -3584*a(n-46)

A206783 Number of nX6 0..1 arrays avoiding 0 0 1 horizontally and 0 1 1 vertically.

Original entry on oeis.org

33, 1089, 16109, 219061, 2431277, 25571618, 248652016, 2339185464, 21198003576, 188119640818, 1635325209384, 14020483612445, 118681118328599, 995030464602413, 8271058337085215, 68276292898767503, 560139098581304227
Offset: 1

Views

Author

R. H. Hardin Feb 12 2012

Keywords

Comments

Column 6 of A206785

Examples

			Some solutions for n=4
..0..0..0..0..0..0....0..0..0..0..0..0....1..1..0..0..0..0....0..1..1..1..0..0
..0..1..0..0..0..0....0..1..1..1..0..1....1..0..1..0..0..0....1..0..1..1..1..0
..0..0..0..0..0..0....1..0..0..0..0..0....1..1..0..1..0..1....0..1..0..0..0..0
..1..0..1..1..0..1....0..0..0..0..0..0....0..0..0..0..0..0....1..0..1..1..0..1
		

Formula

Empirical: a(n) = 27*a(n-1) -107*a(n-2) -3185*a(n-3) +29027*a(n-4) +139781*a(n-5) -2327849*a(n-6) -1428245*a(n-7) +105662367*a(n-8) -129799431*a(n-9) -3193684173*a(n-10) +7544465727*a(n-11) +69245484205*a(n-12) -223764545261*a(n-13) -1122099214761*a(n-14) +4519525668593*a(n-15) +13911288934347*a(n-16) -67918599438577*a(n-17) -133399761461023*a(n-18) +792919330213711*a(n-19) +987658801265267*a(n-20) -7379844512608923*a(n-21) -5519015759925929*a(n-22) +55718304920163387*a(n-23) +21508641782953623*a(n-24) -345580589204513115*a(n-25) -39371543655604643*a(n-26) +1777738636848552259*a(n-27) -170133186364396387*a(n-28) -7642764331604869131*a(n-29) +1986683057685806563*a(n-30) +27629996387624962513*a(n-31) -10774968741082518755*a(n-32) -84428373779009271125*a(n-33) +41653256962260701321*a(n-34) +219001939989526456293*a(n-35) -125997446101257208921*a(n-36) -483995268692229983823*a(n-37) +309544896684526926205*a(n-38) +914097310757231058795*a(n-39) -629517525258757238167*a(n-40) -1479063295748983129371*a(n-41) +1071644999873834867851*a(n-42) +2054342133457453563189*a(n-43) -1537734741180775506335*a(n-44) -2452762008660148219673*a(n-45) +1868216169649067453901*a(n-46) +2519295608483739586681*a(n-47) -1926897068906605457202*a(n-48) -2226400191629622129844*a(n-49) +1689530050198144236634*a(n-50) +1691882165594744704162*a(n-51) -1259655885417456961748*a(n-52) -1103994464225575489230*a(n-53) +797948696043437730714*a(n-54) +617134969905394288320*a(n-55) -428706868934114267472*a(n-56) -294538617968667727472*a(n-57) +194798308381292382304*a(n-58) +119471829288772072296*a(n-59) -74565045582299213304*a(n-60) -40940897432884828816*a(n-61) +23918369028584964896*a(n-62) +11762610613516563184*a(n-63) -6385735525173282080*a(n-64) -2806082625067609568*a(n-65) +1406511486464167296*a(n-66) +549032448028475840*a(n-67) -252666790405484928*a(n-68) -86715907293404224*a(n-69) +36462568792386176*a(n-70) +10826602168231808*a(n-71) -4141244602802432*a(n-72) -1038217562576384*a(n-73) +359654424009216*a(n-74) +73348023327744*a(n-75) -22887244918784*a(n-76) -3574721343488*a(n-77) +996785496064*a(n-78) +106647420928*a(n-79) -26222264320*a(n-80) -1456996352*a(n-81) +308281344*a(n-82)

A206784 Number of nX7 0..1 arrays avoiding 0 0 1 horizontally and 0 1 1 vertically.

Original entry on oeis.org

54, 2916, 61003, 1165366, 17515482, 248652016, 3210775788, 40009922008, 476334876958, 5542093365196, 62879423961226, 702454161467961, 7727332842269952, 84083787760092394, 905578254568069211
Offset: 1

Views

Author

R. H. Hardin Feb 12 2012

Keywords

Comments

Column 7 of A206785

Examples

			Some solutions for n=4
..1..0..1..1..1..0..0....1..0..1..1..0..1..0....1..1..1..1..1..1..1
..0..1..0..1..1..0..1....1..0..1..0..1..1..0....0..1..1..1..1..0..1
..0..0..0..0..0..0..0....0..1..0..0..0..0..0....1..1..1..1..1..1..1
..0..0..0..0..0..0..0....0..0..0..0..0..0..0....0..1..1..1..1..0..1
		

A206779 Number of n X n 0..1 arrays avoiding 0 0 1 horizontally and 0 1 1 vertically.

Original entry on oeis.org

2, 16, 230, 6752, 316744, 25571618, 3210775788, 659966594476, 210237711494832, 108398626938474968, 87023259420675848572, 113203578571407946861858, 230632914425943836888182164
Offset: 1

Views

Author

R. H. Hardin Feb 12 2012

Keywords

Comments

Diagonal of A206785

Examples

			Some solutions for n=4
..0..1..1..1....1..1..1..0....1..0..0..0....1..1..0..1....1..0..0..0
..0..0..0..0....0..1..0..0....0..1..1..0....0..0..0..0....0..1..0..0
..1..0..0..0....0..0..0..0....1..0..0..0....0..1..1..1....0..0..0..0
..0..1..1..1....1..1..0..0....0..0..0..0....1..0..0..0....1..0..1..0
		
Showing 1-6 of 6 results.