This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206803 #14 Apr 19 2015 00:16:47 %S A206803 2,8,26,52,98,156,242,376,528,740,996,1276,1608,2024,2530,3068,3708, %T A206803 4420,5170,6040,6994,8080,9350,10716,12132,13652,15226,16912,19004, %U A206803 21216,23614,26076,28868,31728,34798,38084,41518,45180,49076 %N A206803 Sum_{0<j<k<=n} P(k)-P(j), where P(j)=A065091(j) is the j-th odd prime. %C A206803 Partial sums of A185382. %H A206803 Danny Rorabaugh, <a href="/A206803/b206803.txt">Table of n, a(n) for n = 2..10000</a> %t A206803 s[k_] := Prime[k + 1]; t[1] = 0; %t A206803 p[n_] := Sum[s[k], {k, 1, n}]; %t A206803 c[n_] := n*s[n] - p[n] %t A206803 t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1] %t A206803 Table[c[n], {n, 2, 100}] (* A185382 *) %t A206803 %/2 (* A206802 *) %t A206803 Flatten[Table[t[n], {n, 2, 40}]] (* A206803 *) %t A206803 %/2 (* A206804 *) %o A206803 (Sage) [sum([sum([nth_prime(k+1)-nth_prime(j+1) for j in range(1,k)]) for k in range(2,n+1)]) for n in range(2,41)] # _Danny Rorabaugh_, Apr 18 2015 %Y A206803 Cf. A065091, A185382, A206804, A206817. %K A206803 nonn %O A206803 2,1 %A A206803 _Clark Kimberling_, Feb 13 2012