This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206805 #31 Jan 27 2020 07:05:44 %S A206805 1,3,4,6,8,9,11,13,14,16,17,19,21,22,24,26,27,29,30,32,34,35,37,39,40, %T A206805 42,44,45,47,48,50,52,53,55,57,58,60,61,63,65,66,68,70,71,73,75,76,78, %U A206805 79,81,83,84,86,88,89,91,92,94,96,97,99,101,102,104,106,107 %N A206805 Position of 2^n when {2^j} and {3^k} are jointly ranked; complement of A206807. %C A206805 The joint ranking is for j >= 1 and k >= 1, so that the sets {2^j} and {3^k} are disjoint. Not identical to A182774; e.g., A206805 contains 318 but A182774 does not. %H A206805 Jinyuan Wang, <a href="/A206805/b206805.txt">Table of n, a(n) for n = 1..1000</a> %F A206805 a(n) = n + floor(n*log_2(3)) (while A206807(n) = n + floor(n*log_3(2))). %e A206805 The joint ranking begins with 2,3,4,8,9,16,27,32,64,81,128,243,256, so that %e A206805 this sequence = (1,3,4,6,8,9,11,13,...), %e A206805 A206807 = (2,5,7,10,12,...). %t A206805 f[n_] := 2^n; g[n_] := 3^n; z = 200; %t A206805 c = Table[f[n], {n, 1, z}]; s = Table[g[n], {n, 1, z}]; %t A206805 j = Sort[Union[c, s]]; %t A206805 p[n_] := Position[j, f[n]]; q[n_] := Position[j, g[n]]; %t A206805 Flatten[Table[p[n], {n, 1, z}]] (* A206805 *) %t A206805 Table[n + Floor[n*Log[3, 2]], {n, 1, 50}] (* A206805 *) %t A206805 Flatten[Table[q[n], {n, 1, z}]] (* A206807 *) %t A206805 Table[n + Floor[n*Log[2, 3]], {n, 1, 50}] (* A206807 *) %o A206805 (PARI) a(n) = n + floor(n*log(2)/log(3)); \\ _Jinyuan Wang_, Jan 27 2020 %Y A206805 Cf. A182773, A182774, A206807. %K A206805 nonn %O A206805 1,2 %A A206805 _Clark Kimberling_, Feb 16 2012