cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206807 Position of 3^n when {2^j} and {3^k} are jointly ranked; complement of A206805.

This page as a plain text file.
%I A206807 #35 Jan 25 2024 07:09:01
%S A206807 2,5,7,10,12,15,18,20,23,25,28,31,33,36,38,41,43,46,49,51,54,56,59,62,
%T A206807 64,67,69,72,74,77,80,82,85,87,90,93,95,98,100,103,105,108,111,113,
%U A206807 116,118,121,124,126,129,131,134,137,139,142,144,147,149,152,155
%N A206807 Position of 3^n when {2^j} and {3^k} are jointly ranked; complement of A206805.
%C A206807 The joint ranking is for j >= 1 and k >= 1, so that the sets {2^j} and {3^k} are disjoint.
%F A206807 a(n) = n + floor(n*log_2(3)).
%F A206807 A206805(n) = n + floor(n*log_3(2)).
%F A206807 a(n) = n + A056576(n). - _Michel Marcus_, Dec 12 2023
%F A206807 a(n) = A098294(n) + 2*n - 1. - _Ruud H.G. van Tol_, Jan 22 2024
%e A206807 The joint ranking begins with 2,3,4,8,9,16,27,32,64,81,128,243,256, so that
%e A206807 A206805 = (1,3,4,6,8,9,11,13,...)
%e A206807 A206807 = (2,5,7,10,12,...)
%t A206807 f[n_] := 2^n; g[n_] := 3^n; z = 200;
%t A206807 c = Table[f[n], {n, 1, z}]; s = Table[g[n], {n, 1, z}];
%t A206807 j = Sort[Union[c, s]];
%t A206807 p[n_] := Position[j, f[n]]; q[n_] := Position[j, g[n]];
%t A206807 Flatten[Table[p[n], {n, 1, z}]]           (* A206805 *)
%t A206807 Table[n + Floor[n*Log[3, 2]], {n, 1, 50}] (* A206805 *)
%t A206807 Flatten[Table[q[n], {n, 1, z}]]           (* this sequence *)
%t A206807 Table[n + Floor[n*Log[2, 3]], {n, 1, 50}] (* this sequence as a table *)
%o A206807 (PARI) a(n) = logint(3^n, 2) + n; \\ _Ruud H.G. van Tol_, Dec 10 2023
%Y A206807 Cf. A006899, A056576, A098294, A206805, A122437.
%K A206807 nonn
%O A206807 1,1
%A A206807 _Clark Kimberling_, Feb 16 2012