This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206812 #18 Nov 18 2022 09:23:57 %S A206812 1,3,5,7,10,11,14,16,17,20,21,24,26,28,30,32,34,36,38,40,43,44,46,49, %T A206812 50,53,55,57,59,60,63,65,67,69,72,73,75,77,79,82,83,86,88,89,92,94,96, %U A206812 98,100,102,104,106,108,111,112,115,116,118,121,122,125,127,129 %N A206812 Position of 2^n in joint ranking of {2^i}, {3^j}, {5^k}. %C A206812 The exponents i,j,k range through the set N of positive integers, so that the position sequences (this sequence for 2^n, A206813 for 3^n, A206814 for 5^n) partition N. %F A206812 a(n) = n + [n*log_3(2)] + [n*log_5(2)], %F A206812 A206813(n) = n + [n*log_2(3)] + [n*log_5(3)], %F A206812 A206814(n) = n + [n*log_2(5)] + [n*log_3(5)], %F A206812 where []=floor. %e A206812 The joint ranking begins with 2,3,4,5,8,9,16,25,27,32,64,81,125,128,243 so that %e A206812 this sequence = (1,3,5,7,10,11,...) %e A206812 A206813 = (2,6,9,12,15,...) %e A206812 A206814 = (4,8,13,18,23,...) %t A206812 f[1, n_] := 2^n; f[2, n_] := 3^n; %t A206812 f[3, n_] := 5^n; z = 1000; %t A206812 d[n_, b_, c_] := Floor[n*Log[b, c]]; %t A206812 t[k_] := Table[f[k, n], {n, 1, z}]; %t A206812 t = Sort[Union[t[1], t[2], t[3]]]; %t A206812 p[k_, n_] := Position[t, f[k, n]]; %t A206812 Flatten[Table[p[1, n], {n, 1, z/8}]] (* A206812 *) %t A206812 Table[n + d[n, 3, 2] + d[n, 5, 2], %t A206812 {n, 1, 50}] (* A206812 *) %t A206812 Flatten[Table[p[2, n], {n, 1, z/8}]] (* A206813 *) %t A206812 Table[n + d[n, 2, 3] + d[n, 5, 3], %t A206812 {n, 1, 50}] (* A206813 *) %t A206812 Flatten[Table[p[3, n], {n, 1, z/8}]] (* A206814 *) %t A206812 Table[n + d[n, 2, 5] + d[n, 3, 5], %t A206812 {n, 1, 50}] (* A206814 *) %o A206812 (PARI) a(n) = n + logint(2^n,3) + logint(2^n,5) \\ _Ruud H.G. van Tol_, Nov 16 2022 %Y A206812 Cf. A206805, A206813, A206814. %K A206812 nonn %O A206812 1,2 %A A206812 _Clark Kimberling_, Feb 17 2012