This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206813 #5 Mar 30 2012 18:58:12 %S A206813 2,6,9,12,15,19,22,25,29,31,35,39,41,45,48,51,54,58,61,64,68,71,74,78, %T A206813 81,84,87,91,93,97,101,103,107,110,113,117,120,123,126,130,132,136, %U A206813 140,143,146,149,153,156,159,163,165,169,173,175,179,182,185,188 %N A206813 Position of 3^n in joint ranking of {2^i}, {3^j}, {5^k}. %C A206813 The exponents i,j,k range through the set N of positive integers, so that the position sequences (A206812 for 2^n, A206813 for 3^n, A206814 for 5^n) partition N. %F A206813 A205812(n) = n + [n*log(base 3)(2)] + [n*log(base 5)(2)], %F A206813 A205813(n) = n + [n*log(base 2)(3)] + [n*log(base 5)(3)], %F A206813 A205814(n) = n + [n*log(base 2)(5)] + [n*log(base 3)(5)], %F A206813 where []=floor. %e A206813 The joint ranking begins with 2,3,4,5,8,9,16,25,27,32,64,81,125,128,243,256, so that %e A206813 A205812=(1,3,5,7,10,11,14,...) %e A206813 A205813=(2,6,9,12,15,...) %e A206813 A205814=(4,8,13,18,23,...) %t A206813 f[1, n_] := 2^n; f[2, n_] := 3^n; %t A206813 f[3, n_] := 5^n; z = 1000; %t A206813 d[n_, b_, c_] := Floor[n*Log[b, c]]; %t A206813 t[k_] := Table[f[k, n], {n, 1, z}]; %t A206813 t = Sort[Union[t[1], t[2], t[3]]]; %t A206813 p[k_, n_] := Position[t, f[k, n]]; %t A206813 Flatten[Table[p[1, n], {n, 1, z/8}]] (* A206812 *) %t A206813 Table[n + d[n, 3, 2] + d[n, 5, 2], %t A206813 {n, 1, 50}] (* A206812 *) %t A206813 Flatten[Table[p[2, n], {n, 1, z/8}]] (* A206813 *) %t A206813 Table[n + d[n, 2, 3] + d[n, 5, 3], %t A206813 {n, 1, 50}] (* A206813 *) %t A206813 Flatten[Table[p[3, n], {n, 1, z/8}]] (* A206814 *) %t A206813 Table[n + d[n, 2, 5] + d[n, 3, 5], %t A206813 {n, 1, 50}] (* A206814 *) %Y A206813 Cf. A206805, A206812, A206814. %K A206813 nonn %O A206813 1,1 %A A206813 _Clark Kimberling_, Feb 17 2012