This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206814 #5 Mar 30 2012 18:58:12 %S A206814 4,8,13,18,23,27,33,37,42,47,52,56,62,66,70,76,80,85,90,95,99,105,109, %T A206814 114,119,124,128,134,138,142,147,152,157,161,167,171,176,181,186,190, %U A206814 196,200,204,210,214,219,224,229,233,239,243,248,253,258,262 %N A206814 Position of 5^n in joint ranking of {2^i}, {3^j}, {5^k}. %C A206814 The exponents i,j,k range through the set N of positive integers, so that the position sequences (A206812 for 2^n, A206813 for 3^n, A206814 for 5^n) partition N. %F A206814 A205812(n) = n + [n*log(base 3)(2)] + [n*log(base 5)(2)], %F A206814 A205813(n) = n + [n*log(base 2)(3)] + [n*log(base 5)(3)], %F A206814 A205814(n) = n + [n*log(base 2)(5)] + [n*log(base 3)(5)], %F A206814 where []=floor. %e A206814 The joint ranking begins with 2,3,4,5,8,9,16,25,27,32,64,81,125,128,243,256, so that %e A206814 A205812=(1,3,5,7,10,11,14,...) %e A206814 A205813=(2,6,9,12,15,...) %e A206814 A205814=(4,8,13,18,23,...) %t A206814 f[1, n_] := 2^n; f[2, n_] := 3^n; %t A206814 f[3, n_] := 5^n; z = 1000; %t A206814 d[n_, b_, c_] := Floor[n*Log[b, c]]; %t A206814 t[k_] := Table[f[k, n], {n, 1, z}]; %t A206814 t = Sort[Union[t[1], t[2], t[3]]]; %t A206814 p[k_, n_] := Position[t, f[k, n]]; %t A206814 Flatten[Table[p[1, n], {n, 1, z/8}]] (* A206812 *) %t A206814 Table[n + d[n, 3, 2] + d[n, 5, 2], %t A206814 {n, 1, 50}] (* A206812 *) %t A206814 Flatten[Table[p[2, n], {n, 1, z/8}]] (* A206813 *) %t A206814 Table[n + d[n, 2, 3] + d[n, 5, 3], %t A206814 {n, 1, 50}] (* A206813 *) %t A206814 Flatten[Table[p[3, n], {n, 1, z/8}]] (* A206814 *) %t A206814 Table[n + d[n, 2, 5] + d[n, 3, 5], %t A206814 {n, 1, 50}] (* A206814 *) %Y A206814 Cf. A206805, A206812, A206813. %K A206814 nonn %O A206814 1,1 %A A206814 _Clark Kimberling_, Feb 17 2012