This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206817 #21 Oct 11 2015 02:55:02 %S A206817 1,10,73,520,3967,33334,309661,3166468,35416555,430546642,5655609529, %T A206817 79856902816,1206424711303,19419937594990,331860183278677, %U A206817 6000534640290364,114462875817046051,2297294297649673738,48394006967070653425 %N A206817 Sum_{0<j<k<=n} (k!-j!). %C A206817 In the following guide to related sequences, %C A206817 c(n) = Sum_{0<j<n} s(n)-s(j), %C A206817 t(n) = Sum_{0<j<k<=n} s(k)-s(j). %C A206817 s(k).................c(n)........t(n) %C A206817 k....................A000217.....A000292 %C A206817 k^2..................A016061.....A004320 %C A206817 k^3..................A206808.....A206809 %C A206817 k^4..................A206810.....A206811 %C A206817 k!...................A206816.....A206817 %C A206817 prime(k).............A152535.....A062020 %C A206817 prime(k+1)...........A185382.....A206803 %C A206817 2^(k-1)..............A000337.....A045618 %C A206817 k(k+1)/2.............A007290.....A034827 %C A206817 k-th quarter-square..A049774.....A206806 %H A206817 Danny Rorabaugh, <a href="/A206817/b206817.txt">Table of n, a(n) for n = 2..400</a> %F A206817 a(n) = a(n-1)+(n-1)s(n)-p(n-1), where s(n) = n! and p(k) = 1!+2!+...+k!. %F A206817 a(n) = Sum_{k=2..n} A206816(k). %e A206817 a(3) = (2-1) + (6-1) + (6-2) = 10. %t A206817 s[k_] := k!; t[1] = 0; %t A206817 p[n_] := Sum[s[k], {k, 1, n}]; %t A206817 c[n_] := n*s[n] - p[n]; %t A206817 t[n_] := t[n - 1] + (n - 1) s[n] - p[n - 1]; %t A206817 Table[c[n], {n, 2, 32}] (* A206816 *) %t A206817 Flatten[Table[t[n], {n, 2, 20}]] (* A206817 *) %o A206817 (Sage) [sum([sum([factorial(k)-factorial(j) for j in range(1,k)]) for k in range(2,n+1)]) for n in range(2,21)] # _Danny Rorabaugh_, Apr 18 2015 %o A206817 (PARI) a(n)=sum(j=1,n,j!*(2*j-n-1)) \\ _Charles R Greathouse IV_, Oct 11 2015 %o A206817 (PARI) a(n)=my(t=1); sum(j=1,n,t*=j; t*(2*j-n-1)) \\ _Charles R Greathouse IV_, Oct 11 2015 %Y A206817 Cf. A000142, A206816. %K A206817 nonn %O A206817 2,2 %A A206817 _Clark Kimberling_, Feb 12 2012