cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206819 Riordan array (1/(1-10*x-10*x^2), x/(1-10*x-10*x^2)).

Original entry on oeis.org

1, 10, 1, 90, 20, 1, 800, 280, 30, 1, 7100, 3400, 570, 40, 1, 63000, 38300, 8800, 960, 50, 1, 559000, 412000, 120600, 18000, 1450, 60, 1, 4960000, 4296000, 1530000, 291000, 32000, 2040, 70, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 12 2012

Keywords

Comments

Row sums are A000042(n+1).
Subtriangle of triangle given by (0, 10, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.

Examples

			Triangle begins :
1
10, 1
90, 20, 1
800, 280, 30, 1
7100, 3400, 570, 40, 1
63000, 38300, 8800, 960, 50, 1
559000, 412000, 120600, 18000, 1450, 60, 1
4960000, 4296000, 1530000, 291000, 32000, 2040, 70, 1
Triangle (0, 10, -1, 1, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) begins :
1
0, 1
0, 10, 1
0, 90, 20, 1
0, 800, 280, 30, 1
0, 7100, 3400, 570, 40, 1 ...
		

Crossrefs

Formula

T(n,k) = 10*T(n-1,k) - 10*T(n-2,k) + T(n-1,k-1).
G.f.: 1/(1-10*x+10*x^2-y*x).
Sum_{k, 0<=k} T(n,k)*x^k = A178869(n+1), A057086(n), A000042(n+1) for x = -1, 0, 1 respectively.