A206826
Number of solutions (n,k) of s(k)=s(n) (mod n), where 1<=k
0, 2, 1, 2, 1, 2, 1, 2, 3, 2, 2, 2, 3, 4, 1, 2, 1, 2, 6, 3, 3, 2, 4, 2, 3, 2, 6, 2, 5, 2, 1, 3, 3, 8, 3, 2, 3, 4, 6, 2, 3, 2, 6, 3, 3, 2, 2, 2, 3, 5, 6, 2, 1, 8, 6, 5, 3, 2, 8, 2, 3, 5, 1, 8, 5, 2, 6, 4, 12, 2, 2, 2, 3, 3, 6, 8, 4, 2, 6, 2, 3, 2, 8, 8, 3, 3, 6, 2, 5, 8, 6, 4, 3, 8, 2, 2, 3, 4, 6
Offset: 1
Keywords
Examples
5 divides exactly two of the numbers s(n)-s(k) for k=1,2,3,4, so that a(5)=2.
Crossrefs
Cf. A206590.
Programs
-
Mathematica
s[k_] := k (k + 1) (k + 2)/6; f[n_, k_] := If[Mod[s[n] - s[k], n] == 0, 1, 0]; t[n_] := Flatten[Table[f[n, k], {k, 1, n - 1}]] a[n_] := Count[Flatten[t[n]], 1] Table[a[n], {n, 2, 120}] (* A206826 *)