This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A206829 #7 Mar 30 2012 18:58:12 %S A206829 0,1,1,1,2,2,1,1,2,1,1,2,3,1,2,1,2,1,2,2,1,2,1,2,2,1,3,3,1,3,1,2,2,2, %T A206829 1,2,2,2,2,2,1,1,3,1,2,2,2,1,2,1,2,2,2,1,3,1,1,2,4,1,3,1,2,2,3,1,2,2, %U A206829 2,1,3,1,2,2,2,1,2,1,3,1,2,1,3,1,2,1,2,1,2,2,2,3,1,2,2,2,1,3,1 %N A206829 Number of distinct irreducible factors of the polynomial y(n,x) defined at A206821. %C A206829 The first 6 polynomials: 1, x, 1+x, x^2, x^2-1, x^2-x, representing an ordering of the monic polynomials having coefficients in {-1,0,1}; see A206821. %e A206829 y(5,x) = (x-1)(x+1), so a(5)=2. %t A206829 t = Table[IntegerDigits[n, 2], {n, 1, 1000}]; %t A206829 b[n_] := Reverse[Table[x^k, {k, 0, n}]] %t A206829 p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]] %t A206829 TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]] %t A206829 f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1]; %t A206829 q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]] %t A206829 q2[n_] := p[n - f[k] + 2] %t A206829 y1 = Table[p[n], {n, 1, 4}]; %t A206829 Do[AppendTo[y1, Join[Table[q1[n], {n, f[k], g[k] - 1}], %t A206829 Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 8}] %t A206829 y = Flatten[y1]; (* polynomials over {-1,0,1} *) %t A206829 TableForm[Table[{n, y[[n]], Factor[y[[n]]]}, {n, 1, 10}]] %t A206829 Table[-1 + Length[FactorList[y[[n]]]], %t A206829 {n, 1, 120}] (* A206829 *) %Y A206829 Cf. A206821. %K A206829 nonn %O A206829 1,5 %A A206829 _Clark Kimberling_, Feb 12 2012