cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206829 Number of distinct irreducible factors of the polynomial y(n,x) defined at A206821.

This page as a plain text file.
%I A206829 #7 Mar 30 2012 18:58:12
%S A206829 0,1,1,1,2,2,1,1,2,1,1,2,3,1,2,1,2,1,2,2,1,2,1,2,2,1,3,3,1,3,1,2,2,2,
%T A206829 1,2,2,2,2,2,1,1,3,1,2,2,2,1,2,1,2,2,2,1,3,1,1,2,4,1,3,1,2,2,3,1,2,2,
%U A206829 2,1,3,1,2,2,2,1,2,1,3,1,2,1,3,1,2,1,2,1,2,2,2,3,1,2,2,2,1,3,1
%N A206829 Number of distinct irreducible factors of the polynomial y(n,x) defined at A206821.
%C A206829 The first 6 polynomials: 1, x, 1+x, x^2, x^2-1, x^2-x, representing an ordering of the monic polynomials having coefficients in {-1,0,1}; see A206821.
%e A206829 y(5,x) = (x-1)(x+1), so a(5)=2.
%t A206829 t = Table[IntegerDigits[n, 2], {n, 1, 1000}];
%t A206829 b[n_] := Reverse[Table[x^k, {k, 0, n}]]
%t A206829 p[n_] := p[n] = t[[n]].b[-1 + Length[t[[n]]]]
%t A206829 TableForm[Table[{n, p[n], Factor[p[n]]}, {n, 1, 6}]]
%t A206829 f[k_] := 2^k - k; g[k_] := 2^k - 2 + f[k - 1];
%t A206829 q1[n_] := p[2^(k - 1)] - p[n + 1 - f[k]]
%t A206829 q2[n_] := p[n - f[k] + 2]
%t A206829 y1 = Table[p[n], {n, 1, 4}];
%t A206829 Do[AppendTo[y1, Join[Table[q1[n], {n, f[k], g[k] - 1}],
%t A206829    Table[q2[n], {n, g[k], f[k + 1] - 1}]]], {k, 3, 8}]
%t A206829 y = Flatten[y1]; (* polynomials over {-1,0,1} *)
%t A206829 TableForm[Table[{n, y[[n]], Factor[y[[n]]]}, {n, 1, 10}]]
%t A206829 Table[-1 + Length[FactorList[y[[n]]]],
%t A206829 {n, 1, 120}]  (* A206829 *)
%Y A206829 Cf. A206821.
%K A206829 nonn
%O A206829 1,5
%A A206829 _Clark Kimberling_, Feb 12 2012