cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206848 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) ).

This page as a plain text file.
%I A206848 #14 Jan 19 2019 07:03:18
%S A206848 1,2,5,53,3422,826606,1335470713,9548109569885,190076214495558260,
%T A206848 18558289189760778318731,10286810587274357297985552184,
%U A206848 16301371794177939084545371104827679,91249944361047494534207504939405352235731,3283593155431496336538359592977826684908598341441
%N A206848 G.f.: exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n^2, k^2) ).
%C A206848 Logarithmic derivative yields A206849.
%C A206848 Equals row sums of triangle A228902.
%H A206848 Seiichi Manyama, <a href="/A206848/b206848.txt">Table of n, a(n) for n = 0..57</a>
%e A206848 G.f.: A(x) = 1 + 2*x + 5*x^2 + 53*x^3 + 3422*x^4 + 826606*x^5 + 1335470713*x^6 +...
%e A206848 where the logarithm of the g.f. yields the l.g.f. of A206849:
%e A206848 log(A(x)) = 2*x + 6*x^2/2 + 137*x^3/3 + 13278*x^4/4 + 4098627*x^5/5 +...
%o A206848 (PARI) {a(n)=polcoeff(exp(sum(m=1, n, sum(k=0, m, binomial(m^2,k^2))*x^m/m)+x*O(x^n)), n)}
%o A206848 for(n=0, 25, print1(a(n), ", "))
%Y A206848 Cf. A206849 (log), A206846, A206850, A228902.
%Y A206848 Cf. variants: A167006, A228809.
%K A206848 nonn
%O A206848 0,2
%A A206848 _Paul D. Hanna_, Feb 15 2012