cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A206855 The sum of the degree of each root node over all rooted labeled trees on n nodes.

This page as a plain text file.
%I A206855 #33 Mar 23 2023 19:05:15
%S A206855 0,0,2,12,96,1000,12960,201684,3670016,76527504,1800000000,
%T A206855 47158953820,1362182012928,43011849456888,1474041721757696,
%U A206855 54493461914062500,2161727821137838080,91597537648314105376,4128944057284204560384,197293926880252878693804,9961472000000000000000000
%N A206855 The sum of the degree of each root node over all rooted labeled trees on n nodes.
%C A206855 The mean root degree approaches 2 as n -> infinity.
%H A206855 Philippe Flajolet and Robert Sedgewick, <a href="http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html">Analytic Combinatorics</a>, Cambridge Univ. Press, 2009, page 179.
%F A206855 a(n) = Sum_{k=0..n} A206429(n,k)*k.
%F A206855 E.g.f.: T(x)^2 where T(x) is the e.g.f. for A000169.
%F A206855 a(n) = 2*(n^(n-1) - n^(n-2)).
%F A206855 a(n) = 2*A053506(n). - _R. J. Mathar_, Nov 07 2014
%t A206855 nn=15;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];D[ Range[0,nn]!CoefficientList[Series[x Exp[y t],{x,0,nn}],x],y]/.y->1
%K A206855 nonn,easy
%O A206855 0,3
%A A206855 _Geoffrey Critzer_, Feb 13 2012
%E A206855 a(10) corrected by _Georg Fischer_, Mar 23 2023