cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A206857 Number of n X 2 0..2 arrays avoiding the pattern z z+1 z in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

9, 81, 625, 4761, 36481, 279841, 2146225, 16459249, 126225225, 968018769, 7423717921, 56932346025, 436613028289, 3348376640449, 25678633973281, 196928934060769, 1510244084935881, 11582031898782801, 88822372650180625
Offset: 1

Views

Author

R. H. Hardin, Feb 13 2012

Keywords

Comments

Column 2 of A206863.

Examples

			Some solutions for n=4:
..1..0....0..2....0..2....0..1....2..0....0..2....0..2....2..1....0..2....2..1
..1..1....2..2....0..0....2..1....1..2....0..2....1..1....2..1....0..1....0..2
..0..1....0..0....0..1....2..0....0..2....2..2....2..0....2..2....2..0....1..2
..2..0....2..1....2..1....0..1....2..0....0..2....0..1....1..2....1..0....2..1
		

Crossrefs

Cf. A206863.

Formula

Empirical: a(n) = 8*a(n-1) -5*a(n-2) +18*a(n-3) +7*a(n-4) -2*a(n-5) -a(n-6).
Empirical g.f.: x*(9 + 9*x + 22*x^2 + 4*x^3 - 3*x^4 - x^5) / ((1 - x + 3*x^2 - x^3)*(1 - 7*x - 5*x^2 - x^3)). - Colin Barker, Feb 20 2018

A206858 Number of nX3 0..2 arrays avoiding the pattern z z+1 z in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

25, 625, 11092, 192575, 3425501, 61164640, 1090023439, 19411973287, 345764258689, 6159551322461, 109726321617078, 1954613166621694, 34818594738203574, 620246036769753113, 11048844392776786913
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Column 3 of A206863

Examples

			Some solutions for n=4
..0..1..2....2..0..1....0..0..2....2..1..0....2..1..2....2..2..1....2..0..2
..1..2..0....0..0..2....0..0..2....0..1..1....1..2..2....2..0..2....1..1..1
..1..2..0....1..1..2....0..0..0....1..0..2....0..2..1....2..2..0....1..1..0
..2..0..2....1..1..1....1..2..0....1..2..2....1..1..2....0..2..1....1..2..2
		

Formula

Empirical: a(n) = 19*a(n-1) -116*a(n-2) +1656*a(n-3) -869*a(n-4) +21477*a(n-5) +132055*a(n-6) -840588*a(n-7) +536035*a(n-8) -6853600*a(n-9) -60451483*a(n-10) +239622640*a(n-11) +438741327*a(n-12) -1195377988*a(n-13) +5700951257*a(n-14) -6858573805*a(n-15) -111005025152*a(n-16) +81130949991*a(n-17) +729595094458*a(n-18) -164145675576*a(n-19) -1939309566165*a(n-20) -923748685709*a(n-21) -1316253867500*a(n-22) +5260520510689*a(n-23) +20022040020338*a(n-24) -5890585307291*a(n-25) -34836595129811*a(n-26) -22702031279219*a(n-27) -33049844533404*a(n-28) +62351641745134*a(n-29) +155113662891657*a(n-30) +33107662721068*a(n-31) -24178641337873*a(n-32) -194402042599881*a(n-33) -311832321249112*a(n-34) -33618123825367*a(n-35) +89850785718241*a(n-36) +300778171884747*a(n-37) +374045469527943*a(n-38) +86092340636653*a(n-39) +3604652678449*a(n-40) -201637013534345*a(n-41) -207248865450281*a(n-42) -71047680122596*a(n-43) -57323557161104*a(n-44) +59400218029312*a(n-45) +25376225539103*a(n-46) +1328368282685*a(n-47) +4014897641042*a(n-48) -31160253752859*a(n-49) +1838520623206*a(n-50) -6407828259429*a(n-51) +3995902092267*a(n-52) +3720821190410*a(n-53) -1212803780265*a(n-54) +697965261753*a(n-55) -2333237925074*a(n-56) -547181285476*a(n-57) -915715203554*a(n-58) -261550523386*a(n-59) -181827672515*a(n-60) -54985098044*a(n-61) -21779928260*a(n-62) -6733838628*a(n-63) -1623288484*a(n-64) -490248576*a(n-65) -68943120*a(n-66) -19647216*a(n-67) -1205568*a(n-68) -323136*a(n-69)

A206859 Number of nX4 0..2 arrays avoiding the pattern z z+1 z in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

69, 4761, 192575, 7598355, 314918295, 13093461017, 541018725304, 22336434688428, 923097673638406, 38158725414249736, 1577142038208976046, 65180147142970134040, 2693823565225042593429, 111334863067931222656792
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Column 4 of A206863

Examples

			Some solutions for n=4
..0..1..2..2....1..2..2..2....0..2..2..0....0..2..0..1....1..1..1..0
..2..2..0..0....1..2..2..2....1..0..0..0....2..0..1..1....1..2..2..2
..0..2..2..0....1..2..2..1....2..2..1..2....0..2..1..1....0..2..2..2
..0..1..1..1....1..2..2..1....0..1..2..2....2..0..0..1....2..0..0..1
		

A206860 Number of nX5 0..2 arrays avoiding the pattern z z+1 z in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

191, 36481, 3425501, 314918295, 31208037240, 3092914364659, 303316860005399, 29725367062521082, 2918687692387968133, 286698257332823360369, 28152247554788869997756, 2763985738207647315882808
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Column 5 of A206863

Examples

			Some solutions for n=4
..0..2..2..0..0....1..2..2..1..2....1..0..0..0..0....1..2..2..1..1
..1..0..1..1..2....0..1..1..2..2....1..2..2..0..0....1..1..0..1..2
..2..2..1..2..2....1..0..1..2..0....2..0..0..2..1....1..2..0..1..2
..2..1..2..2..2....1..1..2..0..2....2..1..1..1..1....1..2..0..0..1
		

A206861 Number of nX6 0..2 arrays avoiding the pattern z z+1 z in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

529, 279841, 61164640, 13093461017, 3092914364659, 729358354663001, 169438223533971179, 39337025494858264742, 9160013752465174862941, 2134232035568356911671588, 496969525342232065594867876
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Column 6 of A206863

Examples

			Some solutions for n=4
..2..2..2..1..2..2....2..2..1..0..1..1....2..2..1..2..2..2....0..2..1..2..2..1
..0..2..2..0..0..2....0..0..2..0..0..0....1..0..0..1..2..2....1..1..2..0..1..2
..1..0..1..2..0..2....0..1..2..0..0..1....0..1..1..0..2..2....2..1..2..2..1..2
..1..2..2..2..0..2....0..2..2..2..0..1....1..1..1..1..0..2....2..2..2..2..0..1
		

A206856 Number of n X n 0..2 arrays avoiding the pattern z z+1 z in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

3, 81, 11092, 7598355, 31208037240, 729358354663001, 92792498733436652359
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Diagonal of A206863

Examples

			Some solutions for n=4
..0..2..2..2....2..0..1..2....0..2..2..0....0..2..0..1....2..2..2..1
..1..1..0..2....0..2..2..0....1..0..0..0....2..0..1..1....2..1..0..2
..2..0..1..1....2..2..0..1....2..2..1..2....0..2..1..1....2..0..0..2
..2..2..1..2....2..1..2..2....0..1..2..2....2..0..0..1....1..0..1..2
		

A206862 Number of nX7 0..2 arrays avoiding the pattern z z+1 z in any row, column, diagonal or antidiagonal.

Original entry on oeis.org

1465, 2146225, 1090023439, 541018725304, 303316860005399, 169438223533971179, 92792498733436652359, 50788865481935185946431
Offset: 1

Views

Author

R. H. Hardin Feb 13 2012

Keywords

Comments

Column 7 of A206863

Examples

			Some solutions for n=4
..0..2..2..2..1..1..0....1..1..0..1..1..1..1....1..2..2..0..1..2..2
..2..2..0..1..1..1..2....1..0..0..0..1..2..2....2..1..0..1..2..2..2
..0..2..1..0..2..0..1....0..2..1..0..2..2..2....2..1..1..1..0..2..2
..0..0..1..2..2..0..0....0..2..2..2..2..2..0....1..2..2..2..2..1..2
		
Showing 1-7 of 7 results.